Publications by authors named "Edmund G-T Wee"

Background: An HIV-1 vaccine is long overdue. Although vaccine research focuses on the induction of broadly neutralising antibodies, challenging infections such as HIV-1 could require parallel induction of protective T cells. It is important to recognise that not all T cells contribute to protection equally.

View Article and Find Full Text PDF
Article Synopsis
  • * A new vaccine, ChAdOx1.COVconsv12, was created to enhance the immune response by targeting conserved viral regions, aiming to provide broader protection against various sarbecoviruses, including new variants of SARS-CoV-2.
  • * In studies with mice and Syrian hamsters, while ChAdOx1.COVconsv12 alone didn't prevent SARS-CoV-2 infection, it improved recovery and reduced viral load when given alongside a smaller dose of the spike vaccine, indicating potential benefits
View Article and Find Full Text PDF

Introduction: The primary goal of this work is to broaden and enhance the options for induction of protective CD8 T cells against HIV-1 and respiratory pathogens.

Methods: We explored the advantages of the parainfluenza virus 5 (PIV5) vector for delivery of pathogen-derived transgenes alone and in combination with the in-human potent regimen of simian adenovirus ChAdOx1 prime-poxvirus MVA boost delivering bi-valent mosaic of HIV-1 conserved regions designated HIVconsvX.

Results: We showed in BALB/c mice that the PIV5 vector expressing the HIVconsvX immunogens could be readily incorporated with the other two vaccine modalities into a single regimen and that for specific vector combinations, mucosal CD8 T-cell induction was enhanced synergistically by a combination of the intranasal and intramuscular routes of administration.

View Article and Find Full Text PDF

An effective human immunodeficiency virus type 1 (HIV-1) vaccine is the best solution for halting the acquired immune deficiency syndrome epidemic. Here, we describe the design and preclinical immunogenicity of T-cell vaccine expressing novel immunogens tHIVconsvX, vectored by DNA, simian (chimpanzee) adenovirus, and poxvirus modified vaccinia virus Ankara (MVA), a combination highly immunogenic in humans. The tHIVconsvX immunogens combine the three leading strategies for elicitation of effective CD8(+) T cells: use of regions of HIV-1 proteins functionally conserved across all M group viruses (to make HIV-1 escape costly on viral fitness), inclusion of bivalent complementary mosaic immunogens (to maximize global epitope matching and breadth of responses, and block common escape paths), and inclusion of epitopes known to be associated with low viral load in infected untreated people (to induce field-proven protective responses).

View Article and Find Full Text PDF

Recombinant modified vaccinia virus Ankara expressing HIV-1 antigens (MVA.HIVA) was used in ELISpot assays to monitor HIV-1-specific T cell responses in infants. Responses to MVA.

View Article and Find Full Text PDF

The immunogenicities of candidate DNA- and modified vaccinia virus Ankara (MVA)-vectored human immunodeficiency virus (HIV) vaccines were evaluated on their own and in a prime-boost regimen in phase I clinical trials in healthy uninfected individuals in the United Kingdom. Given the current lack of approaches capable of inducing broad HIV-neutralizing antibodies, the pTHr.HIVA DNA and MVA.

View Article and Find Full Text PDF

A novel, experimental subunit human immunodeficiency virus (HIV) vaccine, SFV.HIVA, was constructed. This consists of Semliki Forest virus (SFV), which is a suitable vaccine vector for use in humans, and a passenger gene encoding HIVA, which is an immunogen derived from HIV-1 clade A that is being currently tested in clinical trials of combined DNA- and modified vaccinia virus Ankara (MVA)-vectored vaccines in Oxford (UK) and Nairobi (Kenya).

View Article and Find Full Text PDF

Envelopes of primary R5-tropic human immunodeficiency virus type 1 (HIV-1) isolates may be particularly relevant for vaccine purposes and should be evaluated for immunogenicity in animals including macaques before carrying out human vaccine trials. In the present study, the immunogenicities of synthetic HIV-1 env DNA vaccines, which had been derived from the early primary isolate Bx08 and contain humanized codons, were evaluated in mice, guinea pigs and rhesus macaques. Neutralization sensitivity of the HIV-1(Bx08) isolate was found to resemble that of other primary isolate prototypes.

View Article and Find Full Text PDF

Without going into the details of the devastation that human immunodeficiency virus (HIV) infection causes especially in the developing world, the best hope for changing the course of this epidemic is development of a safe, effective, accessible prophylactic HIV vaccine. While the inaccessibility of potentially neutralising epitopes on primary HIV isolates has hampered the development of envelope-based vaccines, there is a number of new potent technologies capable of inducing high levels of circulating virus-specific CD8(+) cytotoxic T lymphocytes (CTL). Our original finding that a successive immunisation with DNA and modified vaccinia virus Ankara (MVA) vaccines expressing a common immunogen is a potent way of inducing CD8(+) CTL, which has been since reinforced by us and others, prompted us to test this approach in humans.

View Article and Find Full Text PDF

The minimum requirement for candidate human immunodeficiency virus (HIV) vaccines to enter clinical evaluation in humans should be their demonstrable immunogenicity in non-human primates: induction of antibodies neutralizing primary HIV isolates or elicitation of broad T cell-mediated immune responses. Here, we showed in rhesus macaques that the very same vaccines that had entered clinical trials in Oxford and Nairobi, plasmid pTHr.HIVA DNA and recombinant modified vaccinia virus Ankara MVA.

View Article and Find Full Text PDF