Publications by authors named "Edmond Y Chan"

Autophagy plays a critical role in cell metabolism by degrading and recycling internal components when challenged with limited nutrients. This fundamental and conserved mechanism is based on a membrane trafficking pathway in which nascent autophagosomes engulf cytoplasmic cargo to form vesicles that transport their content to the lysosome for degradation. Based on this simple scheme, autophagy modulates cellular metabolism and cytoplasmic quality control to influence an unexpectedly wide range of normal mammalian physiology and pathophysiology.

View Article and Find Full Text PDF

Autophagy is a conserved cellular degradative process important for cellular homoeostasis and survival. An early committal step during the initiation of autophagy requires the actions of a protein kinase called ATG1 (autophagy gene 1). In mammalian cells, ATG1 is represented by ULK1 (uncoordinated-51-like kinase 1), which relies on its essential regulatory cofactors mATG13, FIP200 (focal adhesion kinase family-interacting protein 200 kDa) and ATG101.

View Article and Find Full Text PDF

Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that occurs constitutively in cells, but can also be induced by stressors such as nutrient starvation or protein aggregation. Autophagy has been implicated in multiple disease mechanisms including neurodegeneration and cancer, with both tumor suppressive and oncogenic roles. Uncoordinated 51-like kinase 1 (ULK1) is a critical autophagy protein near the apex of the hierarchal regulatory pathway that receives signals from the master nutrient sensors MTOR and AMP-activated protein kinase (AMPK).

View Article and Find Full Text PDF

Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that functions at a constitutive level in cells, which may become further activated by stressors such as nutrient starvation or protein aggregation. Autophagy has multiple beneficial roles for maintaining normal cellular homeostasis and these roles are related to the implications of autophagy in disease mechanisms including neurodegeneration and cancer. We previously searched for novel autophagy regulators and identified Rho-kinase 1 (ROCK1) as a candidate.

View Article and Find Full Text PDF

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding.

View Article and Find Full Text PDF

Significance: The Atg1/ULK1 (uncoordinated-51 like kinase 1) protein complex plays an essential role regulating autophagy in mammalian cells. As autophagy is implicated in normal cellular homeostasis and multiple diseases, better mechanistic insight drives development of novel therapeutic approaches.

Recent Advances: Multiple independent laboratories have contributed important new insights into the ULK-signalling pathway.

View Article and Find Full Text PDF

High nutrient availability stimulates the mammalian target of rapamycin complex 1 (mTORC1) to coordinately activate anabolic processes, such as protein synthesis, while inhibiting the cellular catabolism of autophagy. Positive regulation of protein synthesis through the mTORC1 substrates p70 ribosomal S6 kinase (p70S6K) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1) has been well characterized. The complementary inhibitory mechanism in which mTORC1 phosphorylates the autophagy regulatory complex containing unc-51-like kinase 1 (ULK1), the mammalian Atg13 protein, and focal adhesion kinase interacting protein of 200 kD (FIP200) has also been elucidated.

View Article and Find Full Text PDF

The serine/threonine kinase Atg1 plays an essential role downstream of TOR for the regulation of autophagy. In yeast, where Atg1 was first identified, a complex regulatory mechanism has been described that includes at least seven other interacting proteins and a phosphorylation-dependent switch. Recent findings confirm that the mammalian Atg1 homologues ULK1 and 2 have autophagy regulatory roles.

View Article and Find Full Text PDF

Autophagy, an intracellular degradative pathway, maintains cell homeostasis under normal and stress conditions. Nascent double-membrane autophagosomes sequester and enclose cytosolic components and organelles, and subsequently fuse with the endosomal pathway allowing content degradation. Autophagy requires fusion of autophagosomes with late endosomes, but it is not known if fusion with early endosomes is essential.

View Article and Find Full Text PDF

The yeast Atg1 serine/threonine protein kinase and its mammalian homologs ULK1 and ULK2 play critical roles during the activation of autophagy. Previous studies have demonstrated that the conserved C-terminal domain (CTD) of ULK1 controls the regulatory function and localization of the protein. Here, we explored the role of kinase activity and intramolecular interactions to further understand ULK function.

View Article and Find Full Text PDF

Autophagy is a vital response to nutrient starvation. Here, we screened a kinase-specific siRNA library using an autophagy assay in human embryonic kidney 293 cells that measures lipidation of the marker protein GFP-LC3 following amino acid starvation. This screen identified ULK1 in addition to other novel candidates that could be confirmed with multiple siRNAs.

View Article and Find Full Text PDF

Autophagy, fundamentally a lysosomal degradation pathway, functions in cells during normal growth and certain pathological conditions, including starvation, to maintain homeostasis. Autophagosomes are formed through a mechanism that is not well understood, despite the identification of many genes required for autophagy. We have studied the mammalian homologue of Atg9p, a multi-spanning transmembrane protein essential in yeast for autophagy, to gain a better understanding of the function of this ubiquitious protein.

View Article and Find Full Text PDF

Nutrient deprivation of eukaryotic cells provokes a variety of stress responses, including autophagy. Autophagy is carried out by autophagosomes which sequester cytosolic components and organelles for degradation after fusion with protease-containing endosomes. To determine the role of microtubules in autophagy, we used nocodazole and vinblastine to disrupt microtubules and independently measured formation and fusion of autophagsosomes in primary rat hepatocytes.

View Article and Find Full Text PDF

Huntington disease (HD) results from polyglutamine expansion in the huntingtin protein (htt). Despite the widespread tissue expression pattern of htt, neuronal loss is highly selective to medium spiny neurons of the striatum. Huntingtin is phosphorylated on serine-421 (S421) by the pro-survival signaling protein kinase Akt (PKB) and this has been previously shown to be protective against the toxicity of polyglutamine-expanded htt in cell culture.

View Article and Find Full Text PDF

Huntington's disease is caused by polyglutamine expansion (exp) in huntingtin (Htt). Htt-associated protein-1 (HAP1) was the first identified Htt-binding partner. The type 1 inositol (1,4,5)-trisphosphate receptor (InsP3R1) is an intracellular Ca2+ release channel that plays an important role in neuronal function.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by polyglutamine expansion (exp) in huntingtin (Htt). The type 1 inositol (1,4,5)-triphosphate receptor (InsP3R1) is an intracellular calcium (Ca2+) release channel that plays an important role in neuronal function. In a yeast two-hybrid screen with the InsP3R1 carboxy terminus, we isolated Htt-associated protein-1A (HAP1A).

View Article and Find Full Text PDF

Both transcriptional dysregulation and proteolysis of mutant huntingtin (htt) are postulated to be important components of Huntington's disease (HD) pathogenesis. In previous studies, we demonstrated that transgenic mice that express short mutant htt fragments containing 171 or fewer N-terminal residues (R6/2 and N171-82Q mice) recapitulate many of the mRNA changes observed in human HD brain. To examine whether htt protein length influences the ability of its expanded polyglutamine domain to alter gene expression, we conducted mRNA profiling analyses of mice that express an extended N-terminal fragment (HD46, HD100; 964 amino acids) or full-length (YAC72; 3144 amino acids) mutant htt transprotein.

View Article and Find Full Text PDF

Previous analyses of gene expression in a mouse model of Huntington's disease (R6/2) indicated that an N-terminal fragment of mutant huntingtin causes downregulation of striatal signaling genes and particularly those normally induced by cAMP and retinoic acid. The present study expands the regional and temporal scope of this previous work by assessing whether similar changes occur in other brain regions affected in Huntington's disease and other polyglutamine diseases and by discerning whether gene expression changes precede the appearance of disease signs. Oligonucleotide microarrays were employed to survey the expression of approximately 11,000 mRNAs in the cerebral cortex, cerebellum and striatum of symptomatic R6/2 mice.

View Article and Find Full Text PDF

HAP-1 is a huntingtin-associated protein that is enriched in the brain. To gain insight into the normal physiological role of HAP-1, mice were generated with homozygous disruption at the Hap1 locus. Loss of HAP-1 expression did not alter the gross brain expression levels of its interacting partners, huntingtin and p150glued.

View Article and Find Full Text PDF

To investigate the role of Raf-1 in v-Ha-ras transformation, we have isolated and characterized a number of Raf-1 mutants that display increased transforming activity in Rat2 fibroblasts. A dipeptide deletion (Delta144-145) in the cysteine-rich domain (CRD) of conserved region (CR) 1 increased the interaction between Raf-1 and v-Ha-ras effector loop mutants in the yeast two-hybrid system, supporting the proposal that the CRD serves as a secondary ras-binding domain. Many activating mutations were located in CR2.

View Article and Find Full Text PDF