The global threat of multidrug-resistant Gram-negative bacterial pathogens necessitates the development of new and effective antibiotics. FtsZ is an essential and highly conserved cytoskeletal protein that is an appealing antibacterial target for new antimicrobial therapeutics. However, the effectiveness of FtsZ inhibitors against Gram-negative species has been limited due in part to poor intracellular accumulation.
View Article and Find Full Text PDFMreB is a cytoskeleton protein present in rod-shaped bacteria that is both essential for bacterial cell division and highly conserved. Because most Gram (-) bacteria require MreB for cell division, chromosome segregation, cell wall morphogenesis, and cell polarity, it is an attractive target for antibacterial drug discovery. As MreB modulation is not associated with the activity of antibiotics in clinical use, acquired resistance to MreB inhibitors is also unlikely.
View Article and Find Full Text PDFOxacillin is a first-line antibiotic for the treatment of methicillin-sensitive (MSSA) infections but is ineffective against methicillin-resistant (MRSA) due to resistance. Here we present results showing that co-administering oxacillin with the FtsZ-targeting prodrug TXA709 renders oxacillin efficacious against MRSA. The combination of oxacillin and the active product of TXA709 (TXA707) is associated with synergistic bactericidal activity against clinical isolates of MRSA that are resistant to current standard-of-care antibiotics.
View Article and Find Full Text PDFMethicillin-resistant (MRSA) is a multidrug-resistant (MDR) bacterial pathogen of acute clinical significance. Resistance to current standard-of-care antibiotics, such as vancomycin and linezolid, among nosocomial and community-acquired MRSA clinical isolates is on the rise. This threat to global public health highlights the need to develop new antibiotics for the treatment of MRSA infections.
View Article and Find Full Text PDFThe emergence of multi-drug-resistant Gram-negative pathogens highlights an urgent clinical need to explore and develop new antibiotics with novel antibacterial targets. MreB is a promising antibacterial target that functions as an essential elongasome protein in most Gram-negative bacterial rods. Here, we describe a third-generation MreB inhibitor (TXH11106) with enhanced bactericidal activity versus the Gram-negative pathogens , , , and compared to the first- and second-generation compounds A22 and CBR-4830, respectively.
View Article and Find Full Text PDFAddressing the growing problem of antibiotic resistance requires the development of new drugs with novel antibacterial targets. FtsZ has been identified as an appealing new target for antibacterial agents. Here, we describe the structure-guided design of a new fluorescent probe (BOFP) in which a BODIPY fluorophore has been conjugated to an oxazole-benzamide FtsZ inhibitor.
View Article and Find Full Text PDFSeveral studies that have identified agents that potentiate the antimicrobial activity of antibiotics, but there are limited insights into their structure-activity relationships (SAR). The SAR associated with select N-alkylaryl amide derivatives of ornithine was performed to establish those structural features that were associated with potentiation of the antimicrobial activity of clarithromycin against E. coli ATCC 25922.
View Article and Find Full Text PDFSeasonal influenza infections are associated with an estimated 250-500 000 deaths annually. Resistance to the antiviral M2 ion-channel inhibitors has largely invalidated their clinical utility. Resistance to neuraminidase inhibitors has also been observed in several influenza A virus (IAV) strains.
View Article and Find Full Text PDFMethicillin-resistant (MRSA) is a multidrug-resistant pathogen that poses a significant risk to global health today. We have developed a promising new FtsZ-targeting agent (TXA707) with potent activity against MRSA isolates resistant to current standard-of-care antibiotics. We present here results that demonstrate differing extents of synergy between TXA707 and a broad range of β-lactam antibiotics (including six cephalosporins, two penicillins, and two carbapenems) against MRSA.
View Article and Find Full Text PDFIn the effort to combat antibiotic resistance, inhibitors of the essential bacterial protein FtsZ have emerged as a promising new class of compounds with clinical potential. One such FtsZ inhibitor (TXA707) is associated with potent activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) that are resistant to current standard-of-care antibiotics. However, mutations in S.
View Article and Find Full Text PDFCombination therapy of bacterial infections with synergistic drug partners offers distinct advantages over monotherapy. Among these advantages are (i) a reduction of the drug dose required for efficacy, (ii) a reduced potential for drug-induced toxicity, and (iii) a reduced potential for the emergence of resistance. Here, we describe the synergistic actions of the third-generation oral cephalosporin cefdinir and TXA709, a new, FtsZ-targeting prodrug that we have developed with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus (MRSA) relative to earlier agents.
View Article and Find Full Text PDFThe clinical development of FtsZ-targeting benzamide compounds like PC190723 has been limited by poor drug-like and pharmacokinetic properties. Development of prodrugs of PC190723 (e.g.
View Article and Find Full Text PDFTXA497 is representative of a new class of guanidinomethyl biaryl compounds that exhibit potent bactericidal behavior against methicillin-resistant Staphylococcus aureus (MRSA). In this study, we compared the anti-staphylococcal, skin deposition, and skin permeation properties of TXA497 and the topical anti-MRSA antibiotic mupirocin. The results of minimum inhibitory concentration (MIC) assays revealed that TXA497 retains potent activity against MRSA that is highly resistant to mupirocin.
View Article and Find Full Text PDFSeasonal and pandemic influenza outbreaks remain a major human health problem. Inhibition of the endonuclease activity of influenza RNA-dependent RNA polymerase is attractive for the development of new agents for the treatment of influenza infection. Our earlier studies identified a series of 5- and 6-phenyl substituted 3-hydroxypyridin-2(1H)-ones that were effective inhibitors of influenza endonuclease.
View Article and Find Full Text PDFSeveral 3-hydroxyquinolin-2(1H)-ones derivatives were synthesized and evaluated as inhibitors of 2009 pandemic H1N1 influenza A endonuclease. All five of the monobrominated 3-hydroxyquinolin(1H)-2-ones derivatives were synthesized. Suzuki-coupling of p-fluorophenylboronic acid with each of these brominated derivatives provided the respective p-fluorophenyl 3-hydroxyquinolin(1H)-2-ones.
View Article and Find Full Text PDFInfections caused by Gram-negative bacterial pathogens are often difficult to treat, with the emergence of multidrug-resistant strains further restricting clinical treatment options. As a result, there is an acute need for the development of new therapeutic agents active against Gram-negative bacteria. The bacterial protein FtsZ has recently been demonstrated to be a viable antibacterial target for treating infections caused by the Gram-positive bacteria Staphylococcus aureus in mouse model systems.
View Article and Find Full Text PDFThe benzamide derivative PC190723 was among the first of a promising new class of FtsZ-directed antibacterial agents to be identified that exhibit potent antistaphylococcal activity. However, the compound is associated with poor drug-like properties. As part of an ongoing effort to develop FtsZ-targeting antibacterial agents with increased potential for clinical utility, we describe herein the pharmacodynamics, pharmacokinetics, in vivo antistaphylococcal efficacy, and mammalian cytotoxicity of TXY541, a novel 1-methylpiperidine-4-carboxamide prodrug of PC190723.
View Article and Find Full Text PDFPyridyl polyoxazoles are 24-membered macrocyclic lactams comprised of a pyridine, four oxazoles and a phenyl ring. A derivative having a 2-(dimethylamino)ethyl chain attached to the 5-position of the phenyl ring was recently identified as a selective G-quadruplex stabilizer with excellent cytotoxic activity, and good in vivo anticancer activity against a human breast cancer xenograft in mice. Here we detail the synthesis of eight new dimethylamino-substituted pyridyl polyoxazoles in which the point of attachment to the macrocycle, as well as the distance between the amine and the macrocycle are varied.
View Article and Find Full Text PDFInhibition of the endonuclease activity of influenza RNA-dependent RNA polymerase is recognized as an attractive target for the development of new agents for the treatment of influenza infection. Our earlier study employing small molecule fragment screening using a high-resolution crystal form of pandemic 2009 H1N1 influenza A endonuclease domain (PAN) resulted in the identification of 5-chloro-3-hydroxypyridin-2(1H)-one as a bimetal chelating ligand at the active site of the enzyme. In the present study, several phenyl substituted 3-hydroxypyridin-2(1H)-one compounds were synthesized and evaluated for their ability to inhibit the endonuclease activity as measured by a high-throughput fluorescence assay.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2013
The bacterial cell division protein FtsZ represents a novel antibiotic target that has yet to be exploited clinically. The benzamide PC190723 was among the first FtsZ-targeting compounds to exhibit in vivo efficacy in a murine infection model system. Despite its initial promise, the poor formulation properties of the compound have limited its potential for clinical development.
View Article and Find Full Text PDFSeasonal and pandemic influenza viruses continue to be a leading global health concern. Emerging resistance to the current drugs and the variable efficacy of vaccines underscore the need for developing new flu drugs that will be broadly effective against wild-type and drug-resistant influenza strains. Here, we report the discovery and development of a class of inhibitors targeting the cap-snatching endonuclease activity of the viral polymerase.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2013
Several phenyl substituted naphthalenes and isoquinolines have been identified as antibacterial agents that inhibit FtsZ-Zing formation. In the present study we evaluated the antibacterial of several phenyl substituted quinoxalines, quinazolines and 1,5-naphthyridines against methicillin-sensitive and methicillin-resistant Staphylococcusaureus and vancomycin-sensitive and vancomycin-resistant Enterococcusfaecalis. Some of the more active compounds against S.
View Article and Find Full Text PDFNew antibiotics with novel mechanisms of action are urgently needed to overcome the growing bacterial resistance problem faced by clinicians today. PC190723 and related compounds represent a promising new class of antibacterial compounds that target the essential bacterial cell division protein FtsZ. While this family of compounds exhibits potent antistaphylococcal activity, they have poor activity against enterococci and streptococci.
View Article and Find Full Text PDFA series of macrocyclic biphenyl tetraoxazoles was synthesized. The latter stages of the synthetic approach allowed for the addition of varied N-protected α-amino acids, which were subsequently deprotected and condensed to provide the desired macrocycles. Improved yields could be realized in the macrocyclization step of their synthesis relative to other macrocyclic G-quadruplex stabilizers.
View Article and Find Full Text PDF