Publications by authors named "Edmar A Soares"

Metallic nanoparticles (NPs) were decorated onto Zn-MOF-74 crystals by photoreducing different metal precursors (Pt, Au, and Ag) using ultraviolet (UV) light in an aqueous solution with different metal concentrations without using additional stabilizers. X-ray diffraction revealed the three-dimensional structural integrity and crystallinity conservation of Zn-MOF-74 crystals during the UV decoration process. Raman spectroscopy showed a minor rearrangement in the structure of the Zn-MOF-74 crystal surface after NP decoration.

View Article and Find Full Text PDF

Silica bilayers are stable on various metal substrates, including Ru(0001) that is used for the present study. In a systematic attempt to elucidate the detailed structure of the silica bilayer film and its registry to the metal substrate, we performed a low energy electron diffraction (I/V-LEED) study. The experimental work is accompanied by detailed calculations on the stability, orientation and dynamic properties of the bilayer at room temperature.

View Article and Find Full Text PDF

We report on an experimental investigation of serpentine, an abundant phyllosilicate, as an alternative source of two-dimensional (2D) nanomaterials. We show, through scanning probe microscopy (SPM) measurements, that natural serpentine mineral can be mechanically exfoliated down to few-layer flakes, where monolayers can be easily resolved. The parent serpentine bulk material was initially characterized via conventional techniques like XRD, XPS, FTIR and Raman spectroscopies and the results show that it is predominantly constituted by the antigorite mineral.

View Article and Find Full Text PDF

The possibility of utilizing the rich spin-dependent properties of graphene has attracted much attention in the pursuit of spintronics advances. The promise of high-speed and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. Here we demonstrate that chiral spin textures are induced at graphene/ferromagnetic metal interfaces.

View Article and Find Full Text PDF

In the last 40 years, low energy electron diffraction (LEED) has proved to be the most reliable quantitative technique for surface structural determination. In this review, recent developments related to the theory that gives support to LEED structural determination are discussed under a critical analysis of the main theoretical approximation-the muffin-tin calculation. The search methodologies aimed at identifying the best matches between theoretical and experimental intensity versus voltage curves are also considered, with the most recent procedures being reviewed in detail.

View Article and Find Full Text PDF

We present in this work results concerning the application of the generalized simulated annealing (GSA) algorithm to the LEED search problem. The influence of the visiting distribution function (defined by the so-called q(V) parameter) in the effectiveness of the method was investigated by the application of the algorithm to structural searches for optimization of two to ten parameters in a theory-theory comparison for the CdTe(110) system. Results, obtained with the scaling relation and probability of convergence as a function of the number of parameters to be varied, indicate the fast simulated annealing (FSA) (q(V) = 2.

View Article and Find Full Text PDF