Publications by authors named "Edith Van Der Linden"

Here, we present a protocol for the isolation of endothelial cells (ECs) from tissues. ECs make up a minor population of cells in a tissue, but play a major role in tissue homeostasis, as well as in diverse pathologies. To understand the biology of ECs, characterization of this cell population is highly desirable, but requires the availability of purified cells.

View Article and Find Full Text PDF

Genomics efforts of the past decade have resulted in the identification of numerous genes with putative roles in disease processes, including tumor angiogenesis. To functionally validate these genes, cultured endothelial cells are indispensable tools, though these may not completely mimic the phenotype of tissue endothelial cells as the proper microenvironment is lacking. To obtain experimental data representative of normal physiology, the use of primary endothelial cells is preferred.

View Article and Find Full Text PDF

Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex.

View Article and Find Full Text PDF

Crucial to designing angiostatic and vascular targeting agents is the identification of target molecules. Because angiogenesis is not limited to pathologic conditions, careful evaluation of putative therapeutic targets is warranted to prevent adverse effects associated with impaired physiologic angiogenesis. To identify tumor-specific angiogenesis markers, we compared transcriptional profiles of angiogenic endothelial cells isolated from malignant and nonmalignant tissues with those of resting endothelial cells.

View Article and Find Full Text PDF

Human antibodies selectively targeting angiogenic vessels hold great promise for the immunotherapy of human malignancies and can help to elucidate the molecular mechanisms regulating angiogenesis. By selecting a large antibody phage display library on proliferating stimulated HUVEC, we have isolated 15 human antibodies that bind to HUVEC in flow cytometric analysis, 11 of which target the vasculature of colorectal carcinomas as demonstrated by immunohistochemical analysis. The four most specific antibodies, TEM-A, TEM-C, TEM-M and TEM-Q, also stain the vasculature of a series of carcinomas derived from liver, ovary, kidney, bladder, lung and breast, and either react weakly or not all with the vasculature of corresponding normal tissues.

View Article and Find Full Text PDF

We describe the engineering and characterization of a whole human antibody directed toward the tumor-associated protein core of human MUC1. The antibody PH1 originated from the in vitro selection on MUC1 of a nonimmune human Fab phage library. The PH1 variable genes were reformatted for expression as a fully human IgG1.

View Article and Find Full Text PDF