Background: Between 2000 and 2019, more than 1.8 billion long-lasting insecticidal nets (LLINs) were distributed in Africa. While the insecticidal durability of LLINs is around 3 years, nets are commonly discarded 2 years post distribution.
View Article and Find Full Text PDFBackground: The extensive use of indoor residual spraying (IRS) and insecticide-treated nets (ITNs) in Africa has contributed to a significant reduction in malaria transmission. Even so, residual malaria transmission persists in many regions, partly driven by mosquitoes that bite people outdoors. In areas where Anopheles gambiae s.
View Article and Find Full Text PDFBackground: Subsistence rice farmers in south-eastern Tanzania are often migratory, spending weeks or months tending to crops in distant fields along the river valleys and living in improvised structures known as Shamba huts, not fully protected from mosquitoes. These farmers also experience poor access to organized preventive and curative services due to long distances. Mosquito biting exposure in these rice fields, relative to main village residences was assessed, then a portable mosquito-proof hut was developed and tested for protecting these migratory farmers.
View Article and Find Full Text PDFBackground: Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents.
View Article and Find Full Text PDFBackground: Bio-efficacy and residual activity of insecticides used for indoor residual spraying (IRS) and long-lasting insecticide nets (LLINs) were assessed against laboratory-reared and wild populations of the malaria vector, Anopheles arabiensis in south eastern Tanzania. Implications of the findings are examined in the context of potential synergies and redundancies where IRS and LLINs are combined.
Methods: Bioassays were conducted monthly for six months on three LLIN types (Olyset® PermaNet 2.
Background: Outdoor devices for luring and killing disease-transmitting mosquitoes have been proposed as potential complementary interventions alongside existing intra-domiciliary methods namely insecticide treated nets and house spraying with residual insecticides. To enhance effectiveness of such outdoor interventions, it is essential to optimally locate them in such a way that they target most of the outdoor mosquitoes.
Methods: Using odour-baited lure and kill stations (OBS) as an example, we describe a map model derived from: 1) community participatory mapping conducted to identify mosquito breeding habitats, 2) entomological field studies conducted to estimate outdoor mosquito densities and to determine safe distances of the OBS from human dwellings, and 3) field surveys conducted to map households, roads, outdoor human aggregations and landmarks.
Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target mosquitoes, high costs of spraying fungus inside houses, and potential public health concerns associated with introducing fungal conidia inside houses. Here we have demonstrated that Metarhizium anisopliae IP 46, delivered within an extra-domiciliary odor-baited station (OBS), can infect and slowly-kill a high proportion of the wild adult malaria vector, Anopheles arabiensis which entered and exited the OBS.
View Article and Find Full Text PDFBackground: To accelerate efforts towards control and possibly elimination of mosquito-borne diseases such as malaria and lymphatic filariasis, optimally located outdoor interventions could be used to complement existing intradomicilliary vector control methods such as house spraying with insecticides and insecticidal bednets.
Methods: We describe a new odor-baited station for trapping, contaminating and killing disease-transmitting mosquitoes. This device, named the 'Ifakara Odor-baited Station' (Ifakara OBS), is a 4 m3 hut-shaped canvas box with seven openings, two of which may be fitted with interception traps to catch exiting mosquitoes.