The new compound precorallopyronin A is a stable precursor in the biosynthesis of the antibiotic corallopyronin A. This natural product was isolated from the producer strain Corallococcus coralloides B035. Together with various semisynthetically obtained corallopyronin A derivatives its antibacterial effects were evaluated.
View Article and Find Full Text PDFThe myxobacterium Corallococcus coralloides is the producer of the antibiotic compound corallopyronin A, which is currently in preclinical evaluation. To obtain suitable amounts of this antibiotic, the production strain C. coralloides B035 was cultured in large volumes, which in the addition to the isolation of the target molecule facilitates the detection of additional metabolites of this myxobacterial strain (corallorazines A-C).
View Article and Find Full Text PDFUnlike their terrestrial counterparts, marine myxobacteria are hardly investigated for their secondary metabolites. This study describes three new compounds (1-3), named salimyxins and enhygrolides, obtained from the obligate marine myxobacterium Enhygromyxa salina. These are the first natural products obtained from Enhygromyxa species.
View Article and Find Full Text PDFMarine myxobacteria (Enhygromyxa, Plesiocystis, Pseudoenhygromyxa, Haliangium) are phylogenetically distant from their terrestrial counterparts. Salimabromide is the first natural product from the Plesiocystis/Enhygromyxa clade of obligatory marine myxobacteria. Salimabromide has a new tetracyclic carbon skeleton, comprising a brominated benzene ring, a furano lactone residue, and a cyclohexane ring, bridged by a seven-membered cyclic moiety.
View Article and Find Full Text PDFThree myxobacterial strains, designated SWB004, SWB005 and SWB006, were obtained from beach sand samples from the Pacific Ocean and the North Sea. The strains were cultivated in salt water containing media and subjected to studies to determine their taxonomic status, the presence of genes for the biosynthesis of polyketides and antibiotic production. 16S rDNA sequence analysis revealed the type strain Enhygromyxa salina SHK-1(T) as their closest homolog, displaying between 98% (SWB005) and 99% (SWB004 and SWB006) sequence similarity.
View Article and Find Full Text PDF