Dichloromethane (CH(2)Cl(2) , DCM) is a chlorinated solvent mainly produced by industry, and a common pollutant. Some aerobic methylotrophic bacteria are able to grow with this chlorinated methane as their sole carbon and energy source, using a DCM dehalogenase/glutathione S-transferase encoded by dcmA to transform DCM into two molecules of HCl and one molecule of formaldehyde, a toxic intermediate of methylotrophic metabolism. In Methylobacterium extorquens DM4 of known genome sequence, dcmA lies on a 126 kb dcm genomic island not found so far in other DCM-dechlorinating strains.
View Article and Find Full Text PDFAerobic methylotrophic bacteria able to grow with dichloromethane (DCM) as the sole carbon and energy source possess a specific glutathione S-transferase, DCM dehalogenase, which transforms DCM to formaldehyde, used for biomass and energy production, and hydrochloric acid, which is excreted. Evidence is presented for chloride-specific responses for three DCM-degrading bacteria, Methylobacterium extorquens DM4, Methylopila helvetica DM6 and Albibacter methylovorans DM10. Chloride release into the medium was inhibited by sodium azide and m -chlorophenylhydrazone, suggesting an energy-dependent process.
View Article and Find Full Text PDFBackground: Methylotrophy describes the ability of organisms to grow on reduced organic compounds without carbon-carbon bonds. The genomes of two pink-pigmented facultative methylotrophic bacteria of the Alpha-proteobacterial genus Methylobacterium, the reference species Methylobacterium extorquens strain AM1 and the dichloromethane-degrading strain DM4, were compared.
Methodology/principal Findings: The 6.
Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium verticillioides (formerly F. moniliforme), a fungus that commonly contaminates maize. FB1 causes toxicological effects in laboratory and domestic animals including pigs.
View Article and Find Full Text PDF