FAS-associated protein with death domain (FADD) is a major adaptor protein involved in extrinsic apoptosis, embryogenesis, and lymphocyte homeostasis. Although abnormalities of the FADD/death receptor apoptotic pathways have been established in tumorigenesis, fewer studies have analyzed the expression and role of phosphorylated FADD (pFADD). Our identification of FADD as a lymphoma-associated autoantigen in T-cell lymphoma patients raises the possibility that pFADD, with its correlation with cell cycle, may possess role(s) in human T-cell lymphoma development.
View Article and Find Full Text PDFCharacterising tumour-associated antigens (TAAs) not only represents an important approach to the identification of new diagnostic/prognostic markers, but can also provide information on disease processes and additional potential therapeutic targets. Preliminary screening of a protein macroarray, containing more than 12,000 different proteins, with sera from anaplastic lymphoma kinase (ALK)-negative and ALK-positive anaplastic large cell lymphoma (ALCL) patients identified ribonuclease and tumour suppressor protein Ribonuclease T2 (RNASET2), phosphatase lipid phosphate phosphatase-related protein type 3 (LPPR3) and apoptotic adaptor molecule Fas-associating protein (FADD) as ALK-negative ALCL-associated TAAs. Further validation of these observations was confirmed using the ALCL sera in reverse ELISAs.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
June 2010
Purpose: Complex repertoires of IgG autoantibodies have been detected against ocular antigens in patients with glaucoma. The goal was to identify and characterize the IgG autoantibody repertoires in sera of patients with pseudoexfoliation glaucoma (PXFG) with protein macroarrays.
Methods: Serum samples of 21 patients with PXFG and 19 age- and sex-matched control subjects were profiled on high-density colony protein macroarrays expressing His-tagged recombinant human proteins derived from a human fetal brain cDNA library.
Many diagnostic antibodies are generated by immunization with whole cells or cell extracts and are shown by screening on tissue sections to label specific cell populations. However, their target molecule then needs to be identified, and this can be technically demanding. Here we describe the use of protein arrays to define the targets of new or uncharacterized monoclonal antibodies.
View Article and Find Full Text PDFAntibodies are routinely used as research tools, in diagnostic assays and increasingly as therapeutics. Ideally, these applications require antibodies with high sensitivity and specificity; however, many commercially available antibodies are limited in their use as they cross-react with non-related proteins. Here we describe a novel method to characterize antibody specificity.
View Article and Find Full Text PDF