Human microbiota is known to influence immune and cerebral responses by direct and/or indirect mechanisms, including hypothalamic-pituitary-adrenal axis signaling, activation of neural afferent circuits to the brain, and by altering the peripheral immune responses (cellular and humoral immune function, circulatory inflammatory cells, and the production of several inflammatory mediators, such as cytokines, chemokines, and reactive oxygen species). The inflammatory responses in the nasal mucosa (rhinitis) or paranasal sinuses (chronic rhinosinusitis) are dual conditions related with a greater risk for developing depression. In the nasal cavity, anatomic components of the olfactive function are in direct contact with the CNS through the olfactory receptors, neurons, and axons that end in the olfactory bulb and the entorhinal cortex.
View Article and Find Full Text PDFEpilepsy is characterized by a sustained depolarization and repeated discharge of neurons, attributed to overstimulation of N-methyl-D-aspartate receptors (NMDAr). Herein, we propose that probenecid (PROB), an inhibitor of the activity of some ATP binding-cassette transporters (ABC-transporters) can modify NMDAr activity and expression in amygdaloid kindled model. Some studies have suggested that NMDAr expression could be regulated by inhibiting the activity of P-glycoprotein (MDR1) and drug resistance protein-1 (MRP1).
View Article and Find Full Text PDFBackground: There are severe neurological conditions in patients with COVID-19, such as: cerebrovascular disease, Guillain-Barré syndrome, encephalitis, acute hemorrhagic necrotizing encephalopathy and myelitis.
Objective: We describe that the patient with SARS-CoV 2 with respiratory symptoms has subtle or subclinical neurological manifestations.
Material And Methods: Observational, cross-sectional, analytical study, which included patients aged 18-65 years with respiratory symptoms and a confirmed diagnosis of COVID-19.
Huntington's disease (HD), a neurodegenerative disorder caused by an expansion of the huntingtin triplet (Htt), is clinically characterized by cognitive and neuropsychiatric alterations. Although these alterations appear to be related to mutant Htt (mHtt)-induced neurotoxicity, several other factors are involved. The gut microbiota is a known modulator of brain-gut communication and when altered (dysbiosis), several complaints can be developed including gastrointestinal dysfunction which may have a negative impact on cognition, behavior, and other mental functions in HD through several mechanisms, including increased levels of lipopolysaccharide, proinflammatory cytokines and immune cell response, as well as alterations in Ca signaling, resulting in both increased intestinal and blood-brain barrier (BBB) permeability.
View Article and Find Full Text PDFLead (Pb) is a pollutant commonly found in the environment, despite the implementation of public health policies intended to remove it. Due to its chemical characteristics as a divalent ion, Pb interacts with cells, enzymes, and tissues, causing pathological, physical, and behavioral alterations. Recent biotechnological advances have helped us to understand the mechanisms underlying the damage caused by Pb in human populations and in experimental models, and new evidence on the epigenetic alterations caused by exposition to environmental Pb is available.
View Article and Find Full Text PDFHuntington's disease is an autosomal-dominant, neurodegenerative disorder caused by a CAG repeat expansion in exon-1 of the huntingtin gene. Alterations in cholesterol metabolism and distribution have been reported in Huntington's disease, including abnormal interactions between mutant huntingtin and sterol regulatory element-binding proteins, decreased levels of apolipoprotein E/cholesterol/low-density lipoprotein receptor complexes, and alterations in the synthesis of ATP-binding cassette transporter A1. Plasma levels of 24S-hydroxycholestrol, a key intermediary in cholesterol metabolism and a possible marker in neurodegenerative diseases, decreased proportionally to the degree of caudate nucleus atrophy.
View Article and Find Full Text PDFLesions of the cerebellar dentate nucleus (DN) reduce the after-discharge duration induced by repetitive kindling stimulation and decrease seizures to a lower rank according to Racine's scale. The DN sends cholinergic and glutamatergic fibers to the red nucleus (RN), which is composed of glutamatergic and GABAergic cells. To test the participation of these neurotransmitters in seizures, we compared the levels of glutamate and gamma-aminobutyric acid (GABA) at the RN in a control condition, a kindled stage, and a kindled stage followed by DN lesions.
View Article and Find Full Text PDFThe World Health Organization identified urban outdoor air pollution as the eighth highest mortality risk factor in high-income countries. Exposure to ambient pollutants such as ozone (O3) increases the number of hospital admissions. O3 is a highly reactive gas that reacts with cells lining the airways, producing the formation of reactive oxygen species and inflammation.
View Article and Find Full Text PDFOzone (O3) is a component of photochemical smog, which is a major air pollutant and demonstrates properties that are harmful to health because of the toxic properties that are inherent to its powerful oxidizing capabilities. Environmental O3 exposure is associated with many symptoms related to respiratory disorders, which include loss of lung function, exacerbation of asthma, airway damage, and lung inflammation. The effects of O3 are not restricted to the respiratory system or function - adverse effects within the central nervous system (CNS) such as decreased cognitive response, decrease in motor activity, headaches, disturbances in the sleep-wake cycle, neuronal dysfunctions, cell degeneration, and neurochemical alterations have also been described; furthermore, it has also been proposed that O3 could have epigenetic effects.
View Article and Find Full Text PDF