Budding yeast (Saccharomyces cerevisiae) is the most extensively characterized eukaryotic model organism and has long been used to gain insight into the fundamentals of genetics, cellular biology, and the functions of specific genes and proteins. The Saccharomyces Genome Database (SGD) is a scientific resource that provides information about the genome and biology of S. cerevisiae.
View Article and Find Full Text PDFThe Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms.
View Article and Find Full Text PDFAs one of the first model organism knowledgebases, Saccharomyces Genome Database (SGD) has been supporting the scientific research community since 1993. As technologies and research evolve, so does SGD: from updates in software architecture, to curation of novel data types, to incorporation of data from, and collaboration with, other knowledgebases. We are continuing to make steps toward providing the community with an S.
View Article and Find Full Text PDFSaccharomyces cerevisiae is used to provide fundamental understanding of eukaryotic genetics, gene product function, and cellular biological processes. Saccharomyces Genome Database (SGD) has been supporting the yeast research community since 1993, serving as its de facto hub. Over the years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation, and developed various tools and methods for analysis and curation of a variety of emerging data types.
View Article and Find Full Text PDFThe identification and accurate quantitation of protein abundance has been a major objective of proteomics research. Abundance studies have the potential to provide users with data that can be used to gain a deeper understanding of protein function and regulation and can also help identify cellular pathways and modules that operate under various environmental stress conditions. One of the central missions of the Saccharomyces Genome Database (SGD; https://www.
View Article and Find Full Text PDFThe Saccharomyces Genome Database (SGD; www.yeastgenome.org) maintains the official annotation of all genes in the Saccharomyces cerevisiae reference genome and aims to elucidate the function of these genes and their products by integrating manually curated experimental data.
View Article and Find Full Text PDFProteins seldom function individually. Instead, they interact with other proteins or nucleic acids to form stable macromolecular complexes that play key roles in important cellular processes and pathways. One of the goals of Saccharomyces Genome Database (SGD; www.
View Article and Find Full Text PDFThe Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae.
View Article and Find Full Text PDFElucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs.
View Article and Find Full Text PDFUnlabelled: Due to recent advancements in the production of experimental proteomic data, the Saccharomyces genome database (SGD; www.yeastgenome.org ) has been expanding our protein curation activities to make new data types available to our users.
View Article and Find Full Text PDFUnlabelled: The Saccharomyces Genome Database (SGD; www.yeastgenome.org ), the primary genetics and genomics resource for the budding yeast S.
View Article and Find Full Text PDFThe Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation.
View Article and Find Full Text PDFThe IntAct molecular interaction database has created a new, free, open-source, manually curated resource, the Complex Portal (www.ebi.ac.
View Article and Find Full Text PDFTrimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells.
View Article and Find Full Text PDFThe genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world.
View Article and Find Full Text PDFThe Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the community resource for genomic, gene and protein information about the budding yeast Saccharomyces cerevisiae, containing a variety of functional information about each yeast gene and gene product.
View Article and Find Full Text PDFThe Saccharomyces Genome Database (SGD) is a scientific database that provides researchers with high-quality curated data about the genes and gene products of Saccharomyces cerevisiae. To provide instant and easy access to this information on mobile devices, we have developed YeastGenome, a native application for the Apple iPhone and iPad. YeastGenome can be used to quickly find basic information about S.
View Article and Find Full Text PDFThe Saccharomyces Genome Database (SGD, http://www.yeastgenome.org) is the community resource for the budding yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFThe Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is a scientific database for the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as baker's or budding yeast.
View Article and Find Full Text PDFThe Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFGene expression patterns have been demonstrated to be highly variable between similar cell types, for example lab strains and wild strains of Saccharomyces cerevisiae cultured under identical growth conditions exhibit a wide range of expression differences. We have used a genome-wide approach to characterize transcriptional differences between strains of Plasmodium falciparum by characterizing the transcriptome of the 48 h intraerythrocytic developmental cycle (IDC) for two strains, 3D7 and Dd2 and compared these results to our prior work using the HB3 strain. These three strains originate from geographically diverse locations and possess distinct drug sensitivity phenotypes.
View Article and Find Full Text PDF