Publications by authors named "Edita Suziedeliene"

Acinetobacter baumannii is a nosocomial pathogen highly resistant to environmental changes and antimicrobial treatments. Regulation of cellular motility and biofilm formation is important for its virulence, although it is poorly described at the molecular level. It has been previously reported that Acinetobacter genus specifically produces a small positively charged metabolite, polyamine 1,3-diaminopropane, that has been associated with cell motility and virulence.

View Article and Find Full Text PDF

As one of the most diverse habitats of microorganisms, soil has been recognised as a reservoir of both antibiotics and the antibiotic resistance genes (ARGs). Bacteria naturally inhabiting soil or water often possess innate ARGs to counteract the chemical compounds produced by competitors living in the same environment. When such bacteria are able to cause infections in immunocompromised patients, their strong innate antibiotic resistance mechanisms make treatment difficult.

View Article and Find Full Text PDF

is a dangerous hospital pathogen primarily due to its ability to form biofilms on different abiotic and biotic surfaces. The present study investigated the effect of riboflavin- and chlorophyllin-based antimicrobial photodynamic therapy, performed with near-ultraviolet or blue light on the viability of bacterial cells in biofilms and their structural stability, also determining the extent of photoinduced generation of intracellular reactive oxygen species as well as the ability of to form biofilms after the treatment. The efficacy of antimicrobial photodynamic therapy was compared with that of light alone and the role of the photosensitizer type on the photosensitization mechanism was demonstrated.

View Article and Find Full Text PDF

The photodynamic inactivation (PDI) represents the potential alternative to traditional antibiotic therapy, and can be applied to treat various bacterial infections, including those caused by Gram-negative bacterial strains. One of the treatment modalities is based on the capacity of bacterial cells to synthesize the excess amounts of porphyrins after exposure to an externally applied 5-aminolevulinic acid (5-ALA), which makes them photosensitive and leads to reduced survival after irradiation with an appropriately selected light source. This study focuses on the sensitization and the photoinduced inactivation of Salmonella enterica cells in PBS containing 0.

View Article and Find Full Text PDF

and are opportunistic pathogens causing hospital infections with limited treatment options due to bacterial multidrug resistance. Here, we report that antimicrobial photodynamic therapy (aPDT) based on the natural photosensitizers riboflavin and chlorophyllin inactivates and . The riboflavin and chlorophyllin photostability experiments assessed the photomodifications of photosensitizers under the conditions subsequently used to inactivate and .

View Article and Find Full Text PDF

Multidrug resistant shows a growing number of nosocomial infections worldwide during the last decade. The outer membrane vesicles (OMVs) produced by this bacterium draw increasing attention as a possible treatment target. OMVs have been implicated in the reduction of antibiotic level in the surrounding environment, transfer of virulence factors into the host cells, and induction of inflammatory response.

View Article and Find Full Text PDF

is a ubiquitous environmental bacterium that has recently emerged as a multidrug-resistant opportunistic pathogen causing bloodstream, respiratory, and urinary tract infections. The connection between the commensal environmental and the opportunistic pathogen strains is still under investigation. Bacterial toxin-antitoxin (TA) systems have been previously associated with pathogenic traits, such as biofilm formation and resistance to antibiotics, which are important in clinical settings.

View Article and Find Full Text PDF

Currently, is considered as one of the most important infectious agents causing hospital acquired infections worldwide. It has been observed that many clinically important pathogens express contact-dependent growth inhibition (CDI) phenomenon, which modulates cell-cell and cell-environment interactions, potentially allowing bacteria to adapt to ever-changing conditions. Mainly, these systems are used for the inhibition of the growth of genetically different individuals within the same species.

View Article and Find Full Text PDF

Background: Multidrug resistant Acinetobacter baumannii is one of the major infection agents causing nosocomial pneumonia. Therefore, new therapeutic approaches against this bacterium are needed. Surface-exposed proteins from bacterial pathogens are implicated in a variety of virulence-related traits and are considered as promising candidates for vaccine development.

View Article and Find Full Text PDF

Background: Acinetobacter baumannii is one of the most important opportunistic pathogens responsible for hospital acquired infections. It displays multi-drug resistance profile and has the ability to colonize surfaces and persist under harsh conditions. A.

View Article and Find Full Text PDF

is a nosocomial human pathogen of increasing concern due to its multidrug resistance profile. The outer membrane protein A (OmpA) is an abundant bacterial cell surface component involved in pathogenesis. It has been shown that the C-terminal domain of OmpA is located in the periplasm and non-covalently associates with the peptidoglycan layer via two conserved amino acids, thereby anchoring OmpA to the cell wall.

View Article and Find Full Text PDF

Soil is one of the biggest reservoirs of microbial diversity, yet the processes that define the community dynamics are not fully understood. Apart from soil management being vital for agricultural purposes, it is also considered a favorable environment for the evolution and development of antimicrobial resistance, which is due to its high complexity and ongoing competition between the microorganisms. Different approaches to agricultural production might have specific outcomes for soil microbial community composition and antibiotic resistance phenotype.

View Article and Find Full Text PDF

currently represents one of the most important nosocomial infection agent due to its multidrug-resistance and a propensity for the epidemic spread. The strains belonging to the international clonal lineages I (IC I) and II (IC II) are associated with the hospital outbreaks and a high virulence. However, the intra and inter lineage-specific features of strains belonging to these most worldwide spread clones are not thoroughly explored.

View Article and Find Full Text PDF

is one of the major causes of hard to treat multidrug-resistant hospital infections. features contributing to its spread and persistence in clinical environment are only beginning to be explored. Bacterial toxin-antitoxin (TA) systems are genetic loci shown to be involved in plasmid maintenance and proposed to function as components of stress response networks.

View Article and Find Full Text PDF

Acinetobacter baumannii is an opportunistic pathogen that causes nosocomial infections. Due to the ability to persist in the clinical environment and rapidly acquire antibiotic resistance, multidrug-resistant A. baumannii clones have spread in medical units in many countries in the last decade.

View Article and Find Full Text PDF

Objectives: To study the molecular epidemiology of Acinetobacter baumannii isolates from Lithuanian hospitals with an emphasis on the characterization of plasmids and antibiotic-resistance genes and their relationship with European clones (ECs) I and II.

Methods: PFGE, PCR analysis of ECs and resistance genes, plasmid replicon typing, DNA transformation and sequencing were employed to characterize A. baumannii.

View Article and Find Full Text PDF

In this study, the genetic organization of three novel genomic antibiotic resistance islands (AbaRs) in Acinetobacter baumannii isolates belonging to group of European clone II (EC II) comM integrated sequences of 18-, 21-, and 23-kb resistance islands were determined. These resistance islands carry the backbone of AbaR-type transposon structures, which are composed of the transposition module coding for potential transposition proteins and other genes coding for the intact universal stress protein (uspA), sulfate permease (sul), and proteins of unknown function. The antibiotic resistance genes strA, strB, tetB, and tetR and insertion sequence CR2 element were found to be inserted into the AbaR transposons.

View Article and Find Full Text PDF

Escherichia coli dinJ-yafQ operon codes for a functional toxin-antitoxin (TA) system. YafQ toxin is an RNase which, upon overproduction, specifically inhibits the translation process by cleaving cellular mRNA at specific sequences. DinJ is an antitoxin and counteracts YafQ-mediated toxicity by forming a strong protein complex.

View Article and Find Full Text PDF

Antibiotic-resistant Escherichia coli (n = 191) and Salmonella enterica (n = 87) isolates of human and animal origin obtained in Lithuania during 2005-2008 were characterized for the presence and diversity of class 1 and 2 integrons. E. coli isolates were obtained from patients with urinary tract infections (UTIs) (n = 59) and both healthy and diseased farm animals, including poultry (n = 54), swine (n = 35), and cattle (n = 43).

View Article and Find Full Text PDF

Tigecycline is a semisynthetic analogue of earlier tetracyclines and represents the first member of a novel class of antimicrobials - glycylcyclines - recently approved for clinical use. It is active against a broad range of gram-negative and gram-positive bacterial species including clinically important multidrug-resistant nosocomial and community-acquired bacterial pathogens. The exact molecular basis of tigecycline action is not clear at present, although similarly to the tetracyclines, it has been shown to inhibit the translation elongation step by binding to the ribosome 30S subunit and preventing aminoacylated tRNAs to accommodate in the ribosomal A site.

View Article and Find Full Text PDF

A total of 456 non-repetitive Escherichia coli isolates from human clinical specimens (urinary, n=134; cervix, vagina and prostate, n=52; blood, pus and wounds, n=45), healthy animals (cattle, n=45; poultry, n=20) and diseased animals (cattle, n=53; swine, n=64; poultry, n=43) obtained in Lithuania during the period 2005-2008 were studied for trimethoprim (TMP) resistance and the prevalence of dfr genes. A TMP resistance rate in the range of 18-26 % respective to the origin was found in clinical isolates, 23-40 % in isolates from diseased animals and 9-20 % in isolates from healthy animals. Of 112 TMP-resistant isolates, 103 carried at least one of the six dfrA genes (dfrA1, dfrA5, dfrA8, dfrA12, dfrA14 and dfrA17) as determined by multiplex PCR and RFLP.

View Article and Find Full Text PDF

The Escherichia coli asr gene, like its homologues in other enterobacteria, is strongly induced by low external pH. The E. coli asr mutant shows weakened ability to adapt to acidic pH.

View Article and Find Full Text PDF

Bacterial toxin-antitoxin (TA) systems are operons that code for a stable toxic protein and a labile antitoxin. TA modules are widespread on the chromosomes of free-living Bacteria and Archaea, where they presumably act as stress response elements. The chromosome of Escherichia coli K-12 encodes four known TA pairs, as well as the dinJ-yafQ operon, which is hypothesized to be a TA module based on operon organization similar to known TA genes.

View Article and Find Full Text PDF