Evaluation of the activity of antioxidants is commonly based on measurements of the effect of a specific antioxidant on redox reactions conducted in a solution. Given the difference between reactions that occur in homogeneous solutions and those that occur at lipid-water interfaces, as in biological membranes and lipoproteins, the relevance of the commonly-used assays (such as TEAC and ORAC) to the antioxidative activity in biological systems is questionable. The aim of the present investigation is to develop a more relevant assay.
View Article and Find Full Text PDFFree radicals, formed via different mechanisms, induce peroxidation of membrane lipids. This process is of great importance because it modifies the physical properties of the membranes, including its permeability to different solutes and the packing of lipids and proteins in the membranes, which in turn, influences the membranes' function. Accordingly, much research effort has been devoted to the understanding of the factors that govern peroxidation, including the composition and properties of the membranes and the inducer of peroxidation.
View Article and Find Full Text PDFOxidative modifications of LDL are involved in atherogenesis. Previously we have developed a simple assay to evaluate the susceptibility of lipids to copper-induced peroxidation in the relatively natural milieu of unfractionated serum in the presence of excess citrate. Based on our previous results we have proposed that the inducer of peroxidation in our optimized assay is a copper-citrate complex.
View Article and Find Full Text PDF