Publications by authors named "Edit Rutkai"

Proteins are necessary for cellular growth. Concurrently, however, protein production has high energetic demands associated with transcription and translation. Here, we propose that activity of molecular chaperones shape protein burden, that is the fitness costs associated with expression of unneeded proteins.

View Article and Find Full Text PDF

Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible.

View Article and Find Full Text PDF

Several subunits of the multifunctional eukaryotic translation initiation factor 3 (eIF3) contain well-defined domains. Among them is the conserved bipartite PCI domain, typically serving as the principal scaffold for multisubunit 26S proteasome lid, CSN and eIF3 complexes, which constitutes most of the C-terminal region of the c/NIP1 subunit. Interestingly, the c/NIP1-PCI domain is exceptional in that its deletion, despite being lethal, does not affect eIF3 integrity.

View Article and Find Full Text PDF

Despite recent progress in our understanding of the numerous functions of individual subunits of eukaryotic translation initiation factor (eIF) 3, little is known on the molecular level. Using NMR spectroscopy, we determined the first solution structure of an interaction between eIF3 subunits. We revealed that a conserved tryptophan residue in the human eIF3j N-terminal acidic motif (NTA) is held in the helix alpha1 and loop 5 hydrophobic pocket of the human eIF3b RNA recognition motif (RRM).

View Article and Find Full Text PDF

Yeast initiation factor eIF3 (eukaryotic initiation factor 3) has been implicated in multiple steps of translation initiation. Previously, we showed that the N-terminal domain (NTD) of eIF3a interacts with the small ribosomal protein RPS0A located near the mRNA exit channel, where eIF3 is proposed to reside. Here, we demonstrate that a partial deletion of the RPS0A-binding domain of eIF3a impairs translation initiation and reduces binding of eIF3 and associated eIFs to native preinitiation complexes in vivo.

View Article and Find Full Text PDF

Nascent transcripts encoded by the putL and putR sites of phage HK022 bind the transcript elongation complex and suppress termination at downstream transcription terminators. We report here that the chemical stability of putL RNA is considerably greater than that of the typical Escherichia coli message because the elongation complex protects this RNA from degradation. When binding to the elongation complex was prevented by mutation of either putL or RNA polymerase, RNA stability decreased more than 50-fold.

View Article and Find Full Text PDF

We previously proposed that lambdoid phages change their insertion specificity by adapting their integrases to sequences found in secondary attachment sites. To test this model, we quantified recombination between partners that carried sequences from secondary attachment sites catalyzed by wild-type and by mutant integrases with altered specificities. The results are consistent with the model, and indicate differential core site usage in excision and integration.

View Article and Find Full Text PDF

When phage lambda lysogenizes a cell that lacks the primary bacterial attachment site, integrase catalyzes insertion of the phage chromosome into one of many secondary sites. Here, we characterize the secondary sites that are preferred by wild-type lambda and by lambda int mutants with altered insertion specificity. The sequences of these secondary sites resembled that of the primary site: they contained two imperfect inverted repeats flanking a short spacer.

View Article and Find Full Text PDF