Bionic evaporators inspired by natural plants like bamboo and mushrooms have emerged as efficient generators through water capillary evaporation. However, primitive natural evaporators cannot currently meet growing demand, and their performance limitations remain largely unexplored, presenting a substantial challenge. Through extensive experimentation and detailed simulation analysis, this study presents a precisely engineered H-type bamboo steam generator.
View Article and Find Full Text PDFThe availability of clean water is fundamental for maintaining sustainable environments and human ecosystems. Capacitive deionization offers a cost-effective, environmentally friendly, and energy-efficient solution to meet the rising demand for clean water. Electrode materials based on pseudocapacitive adsorption have attracted significant attention in capacitive deionization due to their relatively high desalination capacity.
View Article and Find Full Text PDFHomojunction engineering holds promise for creating high-performance photocatalysts, yet significant challenges persist in establishing and modulating an effective junction interface. To tackle this, we designed and constructed a novel Janus homojunction photocatalyst by integrating two different forms of triazole-based carbon nitride (CN). In this design, super-sized, ultrathin nanosheets of carbon-rich CN grow epitaxially on a nitrogen-rich honeycomb network of CN, creating a tightly bound and extensive interfacial contact area.
View Article and Find Full Text PDFThe current understanding of the mechanism of high-entropy layered double hydroxide (LDH) on enhancing the efficiency of activating peroxymonosulfate (PMS) remains limited. This work reveals that a strong strain effect, driven by high entropy, modulates the structure of FeCoNiCuZn-LDH (HE-LDH) as evidenced by geometric phase analysis (GPA) and density functional theory (DFT) calculations. Compared to FeCoNiZn-LDH and FeCoNi-LDH with weaker strain effects, the high entropy-driven strain effect in HE-LDH shortens metal-oxygen-hydrogen (MOH) bond lengths, allows system to be in a constant steady state during catalysis, reduces the leaching of active M-OH sites, and enhances the adsorption capacity of these sites and the excess strain strength of the interfacial stretches the I of the PMS, facilitates reactive oxygen species (·OH, SO·, O and O·) generation, and thereby improving the efficiency of PMS in degrading tetracycline (TC).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Unraveling the robust self-adaptivity and minimal energy-dissipation of soft reticular materials for environmental catalysis presents a compelling yet unexplored avenue. Herein, a top-down strategy, tailoring from the unique linkage basis, flexibility degree, skeleton electronics to trace-guest adaptability, is proposed to fill the understanding gap between micro-soft covalent organic frameworks (COFs) and photocatalytic performance. The thio(urea)-basis-dominated linkage within benzotrithiophene-based COFs induce the framework contraction/swelling (intralayer micro-flexibility) in response to tetrahydrofuran or water.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) present diverse building blocks for high-performance materials across industries, yet their crystallization mechanisms remain incompletely understood due to gaps in nucleation and growth knowledge. In this study, MOF structural evolution is probed using in situ liquid phase transmission electron microscopy (TEM) and cryo-TEM, unveiling a blend of classical and nonclassical pathways involving liquid-liquid phase separation, particle attachment-coalescence, and surface layer deposition. Additionally, ultrafast high-temperature sintering (UHS) is employed to dope ultrasmall Cobalt nanoparticles (Co NPs) uniformly within nitrogen-doped hard carbon nanocages confirmed by 3D electron tomography.
View Article and Find Full Text PDFTraditional deicing methods are increasingly insufficient for modern technologies like 5G infrastructure, photovoltaic systems, nearspace aerocraft, and terrestrial observatories. To address the challenge of combining anti-icing efficiency with operational performance, an innovative, spectrally selective, photo/electrothermic, ice-phobic film was prepared through a cost-effective mist deposition method. By manipulating the diameter ratio and density of nanowires, the local density of free electrons within this film is controlled to precisely dictate the position and intensity of surface plasmon resonance to achieve spectrally selective photo/electrothermal conversion.
View Article and Find Full Text PDFMultivalent-ion batteries have garnered significant attention as promising alternatives to traditional lithium-ion batteries due to their higher charge density and potential for sustainable energy storage solutions. Nevertheless, the slow diffusion of multivalent ions is the primary issue with electrode materials for multivalent-ion batteries. In this review, the suitability of MXene-based materials for multivalent-ion batteries applications is explored, focusing onions such as magnesium (Mg), aluminum (Al), zinc (Zn), and beyond.
View Article and Find Full Text PDFMater Horiz
October 2024
Membrane-contamination during electrodialysis (ED) process is still a non-negligible challenge, while irreversible consumption and unsustainability have become the main bottlenecks limiting the improvement of anion exchange membranes (AEMs) anti-contamination activity. Here, we introduce a novel approach to design AEMs by chemically assembling 4-pyndinepropanol with bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) in an electrochromic-inspired process. Subsequently, the co-mingled TiO@Ag nanosheet with the casting-solution were sprayed onto the surface of the substrate membrane to create a micrometer-thick interfacial layer.
View Article and Find Full Text PDFThe demand for efficient and sustainable energy solutions is outpacing the development of advanced materials and technologies for energy storage and harvesting. To address this urgent need, innovative strategies are being explored to enhance energy efficiency and sustainability. Guest edited by and Community Board members Edison Huixiang Ang, National Institute of Education, Nanyang Technological University, Singapore, and Satyajit Ratha, Indian Institute of Technology Bhubaneshwar, India, this collection highlights the latest breakthroughs in energy storage and harvesting.
View Article and Find Full Text PDFNanosprings demonstrate promising mechanical characteristics, positioning them as pivotal components in a diverse array of potential nanoengineering applications. To unlock the full potential of these nanosprings, ongoing research is concentrated on emulating springs at the nanoscale in terms of both morphology and function. This review underscores recent advancements in the field and provides a comprehensive overview of the diverse methods employed for nanospring preparation.
View Article and Find Full Text PDFLithium iron phosphate batteries, known for their durability, safety, and cost-efficiency, have become essential in new energy applications. However, their widespread use has highlighted the urgency of battery recycling. Inadequate management could lead to resource waste and environmental harm.
View Article and Find Full Text PDFWastewater treatment recycling is critical to ensure safe water supply or to overcome water shortage. Herein, we developed metallic Co integration onto MnO nanorods (MON) resulting in a phase-separated synergetic catalyst by creating more Mn(III) the Jahn-Teller effect and oxygen vacancies and improving the redox capability of Co nanoparticles mediated by a thin carbon layer. Additionally, the N-doped surface carbon network on MON contributes to polar sites, facilitating the enrichment of contaminants around reactive sites, thereby shortening the migration of reactive oxidative species (ROS) toward contaminants.
View Article and Find Full Text PDFLithium-ion batteries have found extensive applications due to their high energy density and low self-discharge rates, spanning from compact consumer electronics to large-scale energy storage facilities. Despite their widespread use, challenges such as inherent capacity degradation and the potential for thermal runaway hinder sustainable development. In this study, we introduce a unique approach to synthesize anode materials for lithium-ion batteries, specifically imidazole-intercalated cobalt hydroxide.
View Article and Find Full Text PDFWith the continuous advancement of electrodialysis (ED) technology, there arises a demand for improved monovalent cation exchange membranes (CEMs). However, limitations in membrane materials and structures have resulted in the low selectivity of monovalent CEMs, posing challenges in the separation of Li and Mg. In this investigation, a designed CEM with a swelling-embedded structure was created by integrating a polyelectrolyte containing N-oxide Zwitterion into a sulfonated poly(ether ether ketone) (SPEEK) membrane, leveraging the notable solubility characteristic of SPEEK.
View Article and Find Full Text PDFThe electrocatalytic hydrodehalogenation (EHDH) process mediated by atomic hydrogen (H*) is recognized as an efficient method for degrading halogenated organic pollutants (HOPs). However, a significant challenge is the excessive energy consumption resulting from the recombination of H* to H production in the EHDH process. In this study, a promising strategy was proposed to generate piezo-induced atomic H*, without external energy input or chemical consumption, for the degradation and dehalogenation of HOPs.
View Article and Find Full Text PDFIn various domains spanning materials synthesis, chemical catalysis, life sciences, and energy materials, transmission electron microscopy (TEM) methods exert a profound influence. These methodologies enable the real-time observation and manipulation of gas-phase and liquid-phase reactions at the nanoscale, facilitating the exploration of pivotal reaction mechanisms. Fundamental research areas like crystal nucleation, growth, etching, and self-assembly have greatly benefited from these techniques.
View Article and Find Full Text PDFIn this study, we developed an approach by coating silica nanospheres with polydopamine and metal precursor, followed by carbonization to create interfacial engineered MoO. The presence of numerous crystal interfaces and metal-carbon interactions resulted in a remarkable enhancement of C-N coupling activity and stability of catalyst compared to one obtained by air calcination.
View Article and Find Full Text PDFElectrocatalytic nitrogen reduction is a challenging process that requires achieving high ammonia yield rate and reasonable faradaic efficiency. To address this issue, this study developed a catalyst by in situ anchoring interfacial intergrown ultrafine MoO nanograins on N-doped carbon fibers. By optimizing the thermal treatment conditions, an abundant number of grain boundaries were generated between MoO nanograins, which led to an increased fraction of oxygen vacancies.
View Article and Find Full Text PDFGraphene-based materials (GBMs) possess a unique set of properties including tunable interlayer channels, high specific surface area, and good electrical conductivity characteristics, making it a promising material of choice for making electrode in rechargeable batteries. Lithium-ion batteries (LIBs) currently dominate the commercial rechargeable battery market, but their further development has been hampered by limited lithium resources, high lithium costs, and organic electrolyte safety concerns. From the performance, safety, and cost aspects, zinc-based rechargeable batteries have become a promising alternative of rechargeable batteries.
View Article and Find Full Text PDFliquid phase transmission electron microscopy (TEM) and three-dimensional electron tomography are powerful tools for investigating the growth mechanism of MOFs and understanding the factors that influence their particle morphology. However, their combined application to the study of MOF etching dynamics is limited due to the challenges of the technique such as sample preparation, limited field of view, low electron density, and data analysis complexity. In this research, we present a study employing liquid phase TEM to investigate the etching mechanism of colloidal zeolitic imidazolate framework (ZIF) nanoparticles.
View Article and Find Full Text PDF