Publications by authors named "Edilson M Pinto"

Caffeine is widely present in food and drinks, such as teas and coffees, being also part of some currently commercialized medicines, but despite its enhancement on several functions of human body, its exceeding use can promote many health problems. In order to develop new fast approaches for the caffeine sensing, graphite-epoxy composite electrodes (GECE) were used as substrate, being modified by different diazonium salts, synthetized as their tetraflouroborate salts. An analytical method for caffeine quantification was developed, using sware wave voltammetry (SWV) in Britton-Robinson buffer pH 2.

View Article and Find Full Text PDF

The phenazine monomers neutral red (NR) and methylene blue (MB) have been electropolymerised on different quartz crystal microbalance (QCM) substrates: MB at AuQCM and nanostructured ultrathin sputtered carbon AuQCM (AuQCM/C), and NR on AuQCM and on layer-by-layer films of hyaluronic acid with myoglobin deposited on AuQCM (AuQCM-{HA/Mb}(6)). The surface of the electrode substrates was characterised by atomic force microscopy (AFM), and the frequency changes during potential cycling electropolymerisation of the monomer were monitored by the QCM. The study investigates how the monomer chemical structure together with the electrode morphology and surface structure can influence the electropolymerisation process and the electrochemical properties of the phenazine-modified electrodes.

View Article and Find Full Text PDF

A new conducting composite flexible material prepared from cellulose acetate (CA) polymer and graphite has been developed and used for the fabrication of electrodes, which were then characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy (SEM) was used to provide information concerning the morphology of the composite electrode surface. The potential window, background currents and capacitance were evaluated by cyclic voltammetry in the pH range from 4.

View Article and Find Full Text PDF