Publications by authors named "Edilson C da Silva"

In this work, the rate-limiting steps of Δ(3)-carene oxidation by ozone and OH radicals were studied. The thermochemical and kinetic parameters were evaluated using the B3LYP, PBE1PBE and BHandHLYP functionals, coupled cluster methods and the 6-311G(d,p) and 6-311++G(d,p) basis sets. The attack on the double bond may occur in different orientations, leading to different oxidation products.

View Article and Find Full Text PDF

Using density functional methods, the initial reaction steps of limonene ozonolysis have been investigated with a focus on primary ozonide formation and its decomposition to Criegee intermediates and carbonyl compounds. The ozonide formation is highly exothermic, and the decomposition channels have similar free energies of activation, ΔG(‡), indicating that there is no primary pathway for ozonide decomposition. Assuming that ozonide formation is the rate limiting step, the theoretical rate coefficient, k = 1.

View Article and Find Full Text PDF

A density functional theory (DFT) study of the mechanisms of carbonyl oxide reactions from geraniol-trans, 6-methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal ozonolysis is presented. The geometries, energies, and harmonic vibrational frequencies of each stationary point were determined by B3LYP/6-31(d,p) and BH&HLYP/cc-pVDZ methods. According to the calculations, the ozonolysis reactions are initiated by the formation of van der Waals (VDW) complexes to yield primary ozonides, which rapidly open to carbonyl oxide compounds.

View Article and Find Full Text PDF

A combined density functional theory and transition state theory study of the gas-phase addition of OH to 3,7-dimethylocta-2,6-dien-1-ol (trans-geraniol), 6-methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal is presented. In this study, all different possibilities for the addition of the OH radical to the C-C double bonds in trans-geraniol, 6-methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal were considered. The geometries, energies, and harmonic vibrational frequencies at each stationary point were determined at the MPW1K/cc-pVDZ and BH&HLYP/cc-pVDZ levels.

View Article and Find Full Text PDF

Recent experimental results on positive charged formic acid clusters generated by the impact of (252)Cf fission fragments (FF) on icy formic acid target are examined in this paper by quantum mechanical calculations. Structures for the clusters series, (HCOOH)(n)H(+) and (HCOOH)(n)H(3)O(+), where 2 < or = n < or = 4, are proposed based on ab initio electronic structure methods. Results show that cluster growth does not present a regular pattern of nucleation.

View Article and Find Full Text PDF

A combined density functional theory and transition-state theory study of the mechanisms and reaction coefficients of gas-phase ozonolysis of geraniol-trans, 6-methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal is presented. The geometries, energies, and harmonic vibrational frequencies of each stationary point were determined by B3LYP/6-31(d,p), MPW1K/cc-pVDZ, and BH&HLYP/cc-pVDZ methods. According to the calculations, the ozone 6-methyl-5-hepten-2-one reaction is faster than the ozone 6-hydroxy-4-methyl-4-hexenal reaction, but both are slower than the ozone geraniol-trans reaction.

View Article and Find Full Text PDF

In this work the mechanism of glucose mutarotation is investigated in aqueous solution considering the most likely pathways proposed from experimental work. Two mechanisms are studied. The first involves an intramolecular proton transfer as proposed by textbooks of organic chemistry, and the second uses one solvent water molecule to assist proton transfer.

View Article and Find Full Text PDF

A parametrization methodology for evaluating the solvation free energy, using the polarizable continuum model implemented in Gamess software, is presented in a formulation which makes use of a group contribution conception to construct the cavities. The systems studied include alkanes, alcohols, aldehydes and ketones embeded in a continuous medium simulating the water as the solvent. For each family, the CH2, OH, and C=O moieties of atoms are put together in single spheres forming a group.

View Article and Find Full Text PDF