Publications by authors named "Edge T"

Article Synopsis
  • Cyanobacteria, a type of blue-green algae, can produce harmful toxins under nutrient-rich conditions, leading to harmful algal blooms (cHABs) that negatively affect water quality and have economic impacts.
  • This research examined microcystin levels and cyanotoxin genes in three locations in the Canadian Great Lakes to better understand how cHABs form and the dynamics of cyanobacterial populations.
  • The results showed significant regional differences in cyanobacterial communities and toxin production, pointing to the need for advanced monitoring and management strategies tailored to specific environments.
View Article and Find Full Text PDF

Background: Recreational water activities at beaches are popular among Canadians. However, these activities can increase the risk of recreational water illnesses (RWI) among beachgoers. Few studies have been conducted in Canada to determine the risk of these illnesses.

View Article and Find Full Text PDF
Article Synopsis
  • Harmful algal blooms (HABs) contribute to water eutrophication, affecting recreational lake usability, prompting an analysis of various detection methods for cyanobacteria and cyanotoxins in the Great Lakes region.
  • DNA sequencing methods effectively differentiated between bloom and non-bloom samples, revealing a higher presence of metabolic genes linked to cyanobacteria in bloom areas, though toxin genes were less identifiable.
  • Traditional techniques like qPCR and ELISA showed higher microcystin levels in bloom sites, indicating that not all blooms produce this toxin, thus requiring comprehensive monitoring to fully assess water quality.
View Article and Find Full Text PDF

Escherichia coli serves as a proxy indicator of fecal contamination in aquatic ecosystems. However, its identification using traditional culturing methods can take up to 24 h. The application of DNA markers, such as conserved signature proteins (CSPs) genes (unique to all species/strains of a specific taxon), can form the foundation for novel polymerase chain reaction (PCR) tests that unambiguously identify and detect targeted bacterial taxa of interest.

View Article and Find Full Text PDF

Background: Fecal bacterial densities are proxy indicators of beach water quality, and beach posting decisions are made based on Beach Action Value (BAV) exceedances for a beach. However, these traditional beach monitoring methods do not reflect the full extent of microbial water quality changes associated with BAV exceedances at recreational beaches (including harmful cyanobacteria). This proof of concept study evaluates the potential of metagenomics for comprehensively assessing bacterial community changes associated with BAV exceedances compared to non-exceedances for two urban beaches and their adjacent river water sources.

View Article and Find Full Text PDF

CrAssphage or crAss-like phage ranks as the most abundant phage in the human gut and is present in human feces-contaminated environments. Due to its high human specificity and sensitivity, crAssphage is a potentially robust source tracking indicator that can distinguish human fecal contamination from agricultural or wildlife sources. Its suitability in the Great Lakes area, one of the world's most important water systems, has not been well tested.

View Article and Find Full Text PDF

Cyanobacteria (blue-green algae) can accumulate to form harmful algal blooms (HABs) on the surface of freshwater ecosystems under eutrophic conditions. Extensive HAB events can threaten local wildlife, public health, and the utilization of recreational waters. For the detection/quantification of cyanobacteria and cyanotoxins, both the United States Environmental Protection Agency (USEPA) and Health Canada increasingly indicate that molecular methods can be useful.

View Article and Find Full Text PDF

Objectives: We evaluated the potential impacts from using a rapid same-day quantitative polymerase chain reaction (qPCR) monitoring method for beach posting outcomes at two Toronto beaches.

Methods: In total, 228 water samples were collected at Marie Curtis Park East and Sunnyside Beaches over the 2021 summer season. Water samples were processed using the USEPA 1609.

View Article and Find Full Text PDF

Lake Erie is subject to recurring events of cyanobacterial harmful algal blooms (cHABs), but measures of nutrients and total phytoplankton biomass seem to be poor predictors of cHABs when taken individually. A more integrated approach at the watershed scale may improve our understanding of the conditions that lead to bloom formation, such as assessing the physico-chemical and biological factors that influence the lake microbial community, as well as identifying the linkages between Lake Erie and the surrounding watershed. Within the scope of the Government of Canada's Genomics Research and Development Initiative (GRDI) Ecobiomics project, we used high-throughput sequencing of the 16S rRNA gene to characterize the spatio-temporal variability of the aquatic microbiome in the Thames River-Lake St.

View Article and Find Full Text PDF

Climate change is already impacting the North American Great Lakes ecosystem and understanding the relationship between climate events and public health, such as waterborne acute gastrointestinal illnesses (AGIs), can help inform needed adaptive capacity for drinking water systems (DWSs). In this study, we assessed a harmonized binational dataset for the effects of extreme precipitation events (≥90th percentile) and preceding dry periods, source water turbidity, total coliforms, and protozoan AGIs - cryptosporidiosis and giardiasis - in the populations served by four DWSs that source surface water from Lake Ontario (Hamilton and Toronto, Ontario, Canada) and Lake Michigan (Green Bay and Milwaukee, Wisconsin, USA) from January 2009 through August 2014. We used distributed lag non-linear Poisson regression models adjusted for seasonality and found extreme precipitation weeks preceded by dry periods increased the relative risk of protozoan AGI after 1 and 3-5 weeks in three of the four cities, although only statistically significant in two.

View Article and Find Full Text PDF

Surveillance data from Southern Ontario show that a majority of Verona Integron-encoded Metallo-β-lactamase (VIM)-producing Enterobacteriaceae are locally acquired. To better understand the local epidemiology, we analysed clinical and environmental bla-positive Enterobacteriaceae from the area. Clinical samples were collected within the Toronto Invasive Bacterial Diseases Network (2010-2016); environmental water samples were collected in 2015.

View Article and Find Full Text PDF

Objectives: To analytically evaluate Ortho Clinical Diagnostics VITROS high-sensitivity cardiac troponin I (hs-cTnI) assay in specific matrices with comparison to other hs-cTn assays.

Methods: The limit of detection (LoD), imprecision, interference and stability testing for both serum and lithium heparin (Li-Hep) plasma for the VITROS hs-cTnI assay was determined. We performed Passing-Bablok regression analyses between sample types for the VITROS hs-cTnI assay and compared them to the Abbott ARCHITECT, Beckman Access and the Siemens ADVIA Centaur hs-cTnI assays.

View Article and Find Full Text PDF

Transformative advances in metagenomics are providing an unprecedented ability to characterize the enormous diversity of microorganisms and invertebrates sustaining soil health and water quality. These advances are enabling a better recognition of the ecological linkages between soil and water, and the biodiversity exchanges between these two reservoirs. They are also providing new perspectives for understanding microorganisms and invertebrates as part of interacting communities (i.

View Article and Find Full Text PDF

The aim of this study was to assess the variability of microbial risk associated with drinking water under various contaminant loading conditions in a drinking water source. For this purpose, a probabilistic-deterministic approach was applied to estimate the loadings of Cryptosporidium, Giardia, and Escherichia coli (E. coli) from fecal contamination sources during both dry and wet weather conditions.

View Article and Find Full Text PDF

Although infectious disease risk from recreational exposure to waterborne pathogens has been an active area of research for decades, beach sand is a relatively unexplored habitat for the persistence of pathogens and fecal indicator bacteria (FIB). Beach sand, biofilms, and water all present unique advantages and challenges to pathogen introduction, growth, and persistence. These dynamics are further complicated by continuous exchange between sand and water habitats.

View Article and Find Full Text PDF

Fecal contamination of recreational waters (i.e. lakes, rivers, beaches) poses an on-going problem for environmental and public health.

View Article and Find Full Text PDF

Areas of concern (AOCs) around the Great Lakes are characterized by historic and ongoing problems with microbial water quality, leading to beneficial use impairments (BUIs) such as beach postings and closures. In this study, we assessed river and beach sites within the Rouge River watershed, associated stormwater outfalls, and at Rouge Beach. The concentrations of as well as human- and gull-specific qPCR microbial source tracking (MST) markers were assessed at all sites.

View Article and Find Full Text PDF

Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents.

View Article and Find Full Text PDF

Fecal indicator bacteria (FIB) are known to accumulate in foreshore beach sand and pore water (referred to as foreshore reservoir) where they act as a non-point source for contaminating adjacent surface waters. While guidelines exist for sampling surface waters at recreational beaches, there is no widely-accepted method to collect sand/sediment or pore water samples for FIB enumeration. The effect of different sampling strategies in quantifying the abundance of FIB in the foreshore reservoir is unclear.

View Article and Find Full Text PDF

Several beaches within the Toronto region area of concern have persistent issues with fecal contamination, causing a beach beneficial use impairment (BUI). In this study, Escherichia coli, including ampicillin-resistant strains, were enumerated via culturable and quantitative polymerase chain reaction (qPCR) methods. Microbial source tracking (MST) markers (for general Bacteroidales, human, ruminant/cow, gull, and dog) were detected and enumerated via PCR and qPCR to identify sources of fecal contamination at Sunnyside Beach and in the Humber River.

View Article and Find Full Text PDF

Many Cryptosporidium species/genotypes are not considered infectious to humans, and more realistic estimations of seasonal infection risks could be made using human infectious species/genotype information to inform quantitative microbial risk assessments (QMRA). Cryptosporidium oocyst concentration and species/genotype data were collected from three surface water surveillance programs in two river basins [South Nation River, SN (2004-09) and Grand River, GR (2005-13)] in Ontario, Canada to evaluate seasonal infection risks. Main river stems, tributaries, agricultural drainage streams, water treatment plant intakes, and waste water treatment plant effluent impacted sites were sampled.

View Article and Find Full Text PDF

Unlabelled: Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp.

View Article and Find Full Text PDF

A rational-based physical descriptive model (PDM) has been developed to predict the levels of Escherichia coli in water at a beach with dynamic conditions in the Greater Toronto Area (GTA), Ontario, Canada. Bacteria loadings in the water were affected not only by multiple physical factors (precipitation, discharge, wind, etc.), but also by cumulative effects, intensity, duration and timing of storm events.

View Article and Find Full Text PDF

Several studies have demonstrated that E. coli appears to display some level of host adaptation and specificity. Recent studies in our laboratory support these findings as determined by logic regression modeling of single nucleotide polymorphisms (SNP) in intergenic regions (ITGRs).

View Article and Find Full Text PDF

Unlabelled: Escherichia coli has been proposed to have two habitats-the intestines of mammals/birds and the nonhost environment. Our goal was to assess whether certain strains of E. coli have evolved toward adaptation and survival in wastewater.

View Article and Find Full Text PDF