Single image depth estimation works fail to separate foreground elements because they can easily be confounded with the background. To alleviate this problem, we propose the use of a semantic segmentation procedure that adds information to a depth estimator, in this case, a 3D Convolutional Neural Network (CNN)-segmentation is coded as one-hot planes representing categories of objects. We explore 2D and 3D models.
View Article and Find Full Text PDFThis paper presents a methodology for glaucoma detection based on measuring displacements of blood vessels within the optic disc (vascular bundle) in human retinal images. The method consists of segmenting the region of the vascular bundle in an optic disc to set a reference point in the temporal side of the cup, determining the position of the centroids of the superior, inferior, and nasal vascular bundle segmented zones located within the segmented region, and calculating the displacement from normal position using the chessboard distance metric. The method was successful in 62 images out of 67, achieving 93.
View Article and Find Full Text PDF