Publications by authors named "Edgardo Cruces"

The estuarine anemone and its symbiont are continuously exposed to intense fluctuations in solar radiation and salinity owing to tidal changes. The aim of this study was to evaluate the effects of the tidal cycle, solar radiation, and salinity fluctuations on the photosynthetic and cellular responses (lipid peroxidation, total phenolic compounds, and antioxidant activity) of the symbiont complex over a 24 h period in the Quempillén River Estuary. Additionally, laboratory experiments were conducted to determine the specific photobiological responses to photosynthetically active radiation (PAR), ultraviolet radiation (UVR), and salinity.

View Article and Find Full Text PDF

The potential ecotoxicological hazard of gaphene oxide (GO) is not fully clarified for photoautotrophic organisms, especially when the interactions of GO with other environmental toxicants are considered. The objective of the current study was to better understand the mechanisms of toxicity of GO in the cyanobacteria Microcystis aeruginosa, and to identify its interactions with cadmium (Cd). The individual and combined contribution of both pollutants in cyanobacteria were evaluated after 96 hours of exposure to GO and/or Cd, using photosynthetic pigments, photosynthetic parameters, cellular indicators of peroxidative damage, viability, and intracellular ROS formation as indicators of toxicity.

View Article and Find Full Text PDF

The cellular capacity of marine organisms to address rapid fluctuations in environmental conditions is decisive, especially when their bathymetric distribution encompasses intertidal and subtidal zones of estuarine systems. To understand how the bathymetric distribution determines the oxidative damage and antioxidant response of the estuarine anemone Anthopleura hermaphroditica, individuals were collected from upper intertidal and shallow subtidal zones of Quempillén River estuary (Chile), and their response analysed in a fully orthogonal, multifactorial laboratory experiment. The organisms were exposed to the effects of temperature (10°C and 30°C), salinity (10 ppt and 30 ppt) and radiation (PAR, > 400-700 nm; PAR+UV-A, > 320-700 nm; PAR+UV-A+UV-B, > 280-700 nm), and their levels of lipid peroxidation, protein carbonyl and total antioxidant capacity were determined.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated how different concentrations of the pesticide azamethiphos impact the physiology of the Chilean oyster (Ostrea chilensis) at varying temperatures (12 and 15 °C).
  • Oysters exposed to a concentration of 15 μg/L of azamethiphos showed better clearance rates (CR) at 15 °C compared to those at 12 °C, indicating that warmer temperatures improve oyster performance under pesticide exposure.
  • Despite high survival rates of 91% and 79% at lower and higher azamethiphos concentrations respectively, the research highlights that the combination of temperature and pesticide negatively affects oyster health and should be studied further for its impact on other marine species.
View Article and Find Full Text PDF

is an intertidal anemone that lives semi-buried in soft sediments of estuaries and releases its brooded embryos directly to the benthos, being exposed to potentially detrimental ultraviolet radiation (UVR) levels. In this study, we investigated how experimental radiation (PAR: photosynthetically active radiation; UVA: ultraviolet A radiation; and UVB: ultraviolet B radiation) influences burrowing (time, depth and speed) in adults and juveniles when they were exposed to PAR (P, 400-700 nm), PAR + UVA (PA, 315-700 nm) and PAR + UVA + UVB (PAB, 280-700 nm) experimental treatments. The role of sediment as a physical shield was also assessed by exposing anemones to these radiation treatments with and without sediment, after which lipid peroxidation, protein carbonyls and total antioxidant capacity were quantified.

View Article and Find Full Text PDF

Ocean contamination mostly comes from anthropogenic contamination in watercourses. However, what happens in desert areas where watercourses are few or nonexistent? Are these coastal areas exempt from contamination? Do the remote locations of desert areas enable pristine coastal areas? Atacama is widely known for its desert aridity and mining resources; however, human impacts in its coastal areas have not been widely studied. Coastal zone uses of this region of Chile were analyzed per province in relation to the population settlements and economic activities on the coastal edge.

View Article and Find Full Text PDF

In photosynthetic microorganisms, the toxicity of carbon nanomaterials (CNMs) is typically characterized by a decrease in growth, viability, photosynthesis, as well as the induction of oxidative stress. However, it is currently unclear how the shape of the carbon structure in CNMs, such as in the 1-dimensional carbon nanotubes (CNTs) compared to the two-dimensional graphene oxide (GO), affects the way they interact with cells. In this study, the effects of GO and oxidized multi-walled CNTs were compared in the cyanobacterium Microcystis aeruginosa to determine the similarities or differences in how the two CNMs interact with and induce toxicity to cyanobacteria.

View Article and Find Full Text PDF

Anthropogenic CO emissions have led to ocean acidification and a rise in the temperature. The present study evaluates the effects of temperature (10, 15 and 20 °C) and pCO (400 and 1200 μatm) on the early development and oxygen consumption rate (OCR) of the sea louse Caligus rogercresseyi. Only temperature has an effect on the hatching and development times of nauplius I.

View Article and Find Full Text PDF

The copepod Caligus rogercresseyi is an ectoparasite of several salmonid species. The pumping activity of filter-feeding molluscs could reduce the abundance of copepod dispersive larval stages in the water column. In this research, nauplius II and copepodid larvae of C.

View Article and Find Full Text PDF

Species of the genus Ulva (Chlorophyta) are regarded as opportunistic organisms, which efficiently adjust their metabolism to the prevailing environmental conditions. In this study, changes in chlorophyll-a fluorescence-based photoinhibition of photosynthesis, electron transport rates, photosynthetic pigments, lipid peroxidation, total phenolic compounds, and antioxidant metabolism were investigated during a diurnal cycle of natural solar radiation in summer (for 12 h) under two treatments: photosynthetically active radiation (PAR: 400-700 nm) and PAR+ ultraviolet (UV) radiation (280-700 nm). In the presence of PAR alone, Ulva rigida showed dynamic photoinhibition, and photosynthetic parameters and pigment concentrations decreased with the intensification of the radiation.

View Article and Find Full Text PDF

The application of iron nanoparticles (FeNPs) to the removal of various pollutants has received wide attention over the last few decades. A synthesis alternative to obtain these nanoparticles without using harmful chemical reagents, such as NaBH, is the use of extracts from different natural sources that allow a lesser degree of agglomeration, in a process known as green synthesis. In this study, FeNPs were synthesized by 'green' (hereafter, BB-Fe NPs) and 'chemical' (hereafter, nZVI) methods.

View Article and Find Full Text PDF

Intertidal macroalgae are constantly subjected to high variations in the quality and quantity of incident irradiance that can eventually generate detrimental effect on the photosynthetic apparatus. The success of these organisms to colonize the stressful coastal habitat is mainly associated with the complexity of their morphological structures and the efficiency of the anti-stress mechanisms to minimize the physiological stress. Lessonia spicata (Phaeophyceae), a brown macroalga, that inhabits the intertidal zone in central-southern Chile was studied in regard to their physiological (quantum yield, electron transport rate, pigments) and biochemical (phlorotannins content, antioxidant metabolism, oxidative stress) responses during a daily light cycle under natural solar radiation.

View Article and Find Full Text PDF

The estuarine slipper limpet Crepipatella dilatata is a gastropod that can survive prolonged periods of low salinities (< 24 PSU) caused by tidal changes and/or prolonged periods of rain. During low salinity events, C. dilatata can isolate its body from the outside environment, by sealing its shell against the substrate on which it grows.

View Article and Find Full Text PDF

Rapid adjustments of the photosynthetic machinery and efficient antioxidant mechanisms to scavenge harmful ROS are physiologic adaptions exhibited by intertidal seaweeds to persist in temperate regions. This study examines short-term (3 h) responses of three large kelps from the cold-temperate coast of Chile, normally adapted to water temperatures <16°C, but exposed abruptly to simultaneous high temperatures and UV radiation during low tide in summer. The kelps were exposed in the laboratory to three temperatures (10, 20 and 28°C) with and without UV radiation, and photochemical reactions, concentration of phlorotannins and antioxidant activity were examined.

View Article and Find Full Text PDF