Purpose: To evaluate the efficacy of two third-generation resorbable biomaterials-F18 bioglass and β-tricalcium phosphate (β-TCP)-in promoting new bone formation in post-extraction sockets in rats. β-TCP, a synthetic porous ceramic, is well-established in clinical use, while F18 bioglass, a novel silica based bioglass.
Methods: After extraction of the right upper incisor of 45 rats, the sockets were filled either with F18 or β-TCP, or left to naturally fill with a blood clot in control group.
J Funct Biomater
July 2024
The evolution of biomaterials engineering allowed for the development of products that improve outcomes in the medical-dental field. Bioglasses have demonstrated the ability to either compose or replace different materials in dentistry. This study evaluated the cytotoxicity, biocompatibility, calcium deposition, and collagen maturation of 45S5 bioglass experimental paste and Bio-C Temp, compared to calcium hydroxide (Ca(OH)) paste.
View Article and Find Full Text PDFCrystal surfaces play a pivotal role in governing various significant processes, such as adsorption, nucleation, wetting, friction, and wear. A fundamental property that influences these processes is the surface free energy, γ. We have directly calculated γ(T) for low-index faces of Lennard-Jones (LJ), germanium, and silicon crystals along their sublimation lines using the computational cleavage technique.
View Article and Find Full Text PDFAim: This study evaluated the efficacy and cytotoxicity of 35% hydrogen peroxide (HP) gel incorporated with 10% (w/w) biosilicate (BioS) on sound enamel and early-stage enamel erosion lesions.
Methods: Discs of enamel/dentin were selected, subjected to erosive cycles (0.3% citric acid, pH 2.
Inorganic-organic hybrid biomaterials have been proposed for bone tissue repair, with improved mechanical flexibility compared with scaffolds fabricated from bioceramics. However, obtaining hybrids with osteoinductive properties equivalent to those of bioceramics is still a challenge. In this work, we present for the first time the synthesis of a class II hybrid modified with bioactive glass nanoparticles (nBGs) with osteoinductive properties.
View Article and Find Full Text PDFIn this article, we investigate the structural relaxation of lithium silicate glass during isothermal physical aging by monitoring the temporal evolution of its refractive index and enthalpy following relatively large (10-40 °C) up- and down-jumps in temperature. The Kohlrausch-Williams-Watts function aptly describes the up- and down-jump data when analyzed separately. For temperature down-jumps, the glass exhibits a typical stretched exponential kinetic behavior with the non-exponentiality parameter β < 1, whereas up-jumps show a compressed exponential behavior (β > 1).
View Article and Find Full Text PDFThis study investigated the influence of incorporating Biosilicate on the physico-mechanical and biological properties of glass ionomer cement (GIC). This bioactive glass ceramic (23.75% NaO, 23.
View Article and Find Full Text PDFUntil quite recently, in almost all papers on crystal nucleation in glass-forming substances, it was assumed that nucleation proceeds in a completely relaxed supercooled liquid and, hence, at constant values of the critical parameters determining the nucleation rate for any given set of temperature, pressure, and composition. Here, we analyze the validity of this hypothesis for a model system by studying nucleation in a lithium silicate glass treated for very long times (up to 250 days) in deeply supercooled states, reaching 60 K below the laboratory glass transition temperature, T. At all temperatures in the considered range, T < T, we observed an enormous difference between the experimental number of nucleated crystals, N(t), and its theoretically expected value computed by assuming the metastable state of the relaxing glass has been reached.
View Article and Find Full Text PDFObjective: To analyze simplified adhesive containing pure or silanized bioglass 45S5 (with calcium) or Sr-45S5 (strontium-substituted) fillers applied on dentin and to evaluate the microtensile bond strength (µTBS), interface nanoleakage, degree of conversion of adhesive, collagen degradation and remineralization.
Methods: Ambar Universal adhesive (FGM) was doped with 10 wt% bioactive glasses to form following groups: Control (no bioglass), 45S5 (conventional bioglass 45S5), Sr-45S5 (Sr-substituted bioglass 45S5), Sil-45S5 (silanized bioglass 45S5) and Sil-Sr-45S5 (silanized bioglass Sr-45S5). Adhesives were applied after dentin acid-etching using phosphoric acid at extracted human molars.
Bioactive glasses have been recommended for the occlusion of dentinal tubules in treating cervical dentin hypersensitivity. This study evaluates an in vivo model of dentin exposure, and tests the efficacy of bioglass treatments. Thirty male Wistar rats received gingival recession surgery on the upper left first molar.
View Article and Find Full Text PDFMagnetic hyperthermia (MHT) is a therapy that uses the heat generated by a magnetic material for cancer treatment. Magnetite nanoparticles are the most used materials in MHT. However, magnetite has a high Curie temperature (~580 °C), and its use may generate local superheating.
View Article and Find Full Text PDFDentin hypersensitivity (DH) is characterized by pain caused by an external stimulus on exposed dentin. Different therapeutic approaches have been proposed to mitigate this problem; however, none of them provide permanent pain relief. In this study, we synthesized and characterized experimental bioactive glasses containing 3.
View Article and Find Full Text PDFThe surface free energy of solids, γ, plays a crucial role in all physical and chemical processes involving material surfaces. For the first time, we obtained γ directly from molecular dynamics simulations using a crystal cleavage method. The approach was successfully realized in a Lennard-Jones system by inserting two movable external walls, each consisting of a single crystal layer, into a bulk crystal to create flat, defect-free surfaces.
View Article and Find Full Text PDFThis study aimed to evaluate the effect of grinding on some surface properties of two lithium disilicate-based glass-ceramics, one experimental new product denominated LaMaV Press (UFSCar-Brazil) and another commercial known as IPS e-max Press (Ivoclar), in the context of simulated clinical adjustment. Discs (N = 24, 12 mm in diameter) were separated into four groups: LaMaV Press with no grinding (E), LaMaV Press after grinding (EG), IPS e-max Press with no grinding (C), and IPS e-max Press after grinding (CG). A 0.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2021
Objectives: This study aimed to optimize the crystallization process and the microstructure of a new bioactive glass-ceramic (GC) previously developed by our research group to obtain machinable glass-ceramics.
Methods: Differential scanning calorimetry (DSC) analyses were conducted to explore the characteristic temperatures and construct a semi-quantitative nucleation curve. The GC specimens were characterized by X-ray diffraction (XRD) and Rietveld refinement.
Objectives: To evaluate obliterating capability and biological performance of desensitizing agents.
Methods: 50 dentin blocks were distributed according to the desensitizing agent used (n = 10): Control (Artificial saliva); Ultra EZ (Ultradent); Desensibilize Nano P (FGM); T5-OH Bioactive Glass (Experimental solution); F18 Bioactive Glass (Experimental solution). Desensitizing treatments were performed for 15 days.
In the application of classical nucleation theory (CNT) and all other theoretical models of crystallization of liquids and glasses it is always assumed that nucleation proceeds only after the supercooled liquid or the glass have completed structural relaxation processes towards the metastable equilibrium state. Only employing such an assumption, the thermodynamic driving force of crystallization and the surface tension can be determined in the way it is commonly performed. The present paper is devoted to the theoretical treatment of a different situation, when nucleation proceeds concomitantly with structural relaxation.
View Article and Find Full Text PDFCrystal nucleation can be described by a set of kinetic equations that appropriately account for both the thermodynamic and kinetic factors governing this process. The mathematical analysis of this set of equations allows one to formulate analytical expressions for the basic characteristics of nucleation, i.e.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
January 2021
Antimicrobial treatment failure has been increasing at alarming rates. In this context, the bactericidal properties of biocompatible antimicrobial agents have been widely studied. F18 is a recently developed bioactive glass that presents a much wider working range when compared to other bioactive glasses, a feature that allows it to be used for coating metallic implants, sintering scaffolds or manufacturing fibers for wound healing applications.
View Article and Find Full Text PDFBioactive glass F18 (BGF18), a glass containing SiO-NaO-KO-MgO-CaO-PO, is highly effective as an osseointegration buster agent when applied as a coating in titanium implants. Biocompatibility tests using this biomaterial exhibited positive results; however, its antimicrobial activity is still under investigation. In this study we evaluated biofilm formation and expression of virulence-factor-related genes in , , and grown on surfaces of titanium and titanium coated with BGF18.
View Article and Find Full Text PDFThis study evaluated the biocompatibility, biomineralization, and collagen fiber maturation induced by Resorbable Tissue Replacement (RTR®; β-tricalcium phosphate [TCP]), Bioglass (BIOG; bioactive glass), and DM Bone® (DMB; hydroxyapatite and β-TCP) in vivo. Sixty-four polyethylene tubes with or without (control group; CG) materials (n=8/group/period) were randomly implanted in the subcutaneous tissue of 16 male Wistar rats (four per rat), weighting 250 to 280 g. The rats were killed after 7 and 30 days (n=8), and the specimens were removed for analysis of inflammation using hematoxylin-eosin; biomineralization assay using von Kossa (VK) staining and polarized light (PL); and collagen fiber maturation using picrosirius red (PSR).
View Article and Find Full Text PDFThis study evaluated the gene expression profile of the human adipose-derived stem cells (hASCs) grown on the Biosilicate /F18 glass (BioS-2P/F18) scaffolds. hASCs were cultured using the osteogenic medium (control), the scaffolds, and their ionic extract. We observed that ALP activity was higher in hASCs grown on the BioS-2P/F18 scaffolds than in hASCs cultured with the ionic extract or the osteogenic medium on day 14.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2021
Biosilicate is a bioactive glass-ceramic used in medical and dental applications. This study evaluated novel reparative materials composed of pure tricalcium silicate (TCS), 30% zirconium oxide (ZrO ) and 10 or 20% biosilicate, in comparison with Biodentine. Setting time was evaluated based on ISO 6876 standard, radiopacity by radiographic analysis, solubility by mass loss, and pH by using a pH meter.
View Article and Find Full Text PDF