Publications by authors named "Edgar Rios-Piedra"

Our objective was to develop an automated deep-learning-based method to evaluate cellularity in rat bone marrow hematoxylin and eosin whole slide images for preclinical safety assessment. We trained a shallow CNN for segmenting marrow, 2 Mask R-CNN models for segmenting megakaryocytes (MKCs), and small hematopoietic cells (SHCs), and a SegNet model for segmenting red blood cells. We incorporated the models into a pipeline that identifies and counts MKCs and SHCs in rat bone marrow.

View Article and Find Full Text PDF

Arterial Spin Labeling (ASL) perfusion image series have recently been utilized for functional connectivity (FC) analysis in healthy volunteers and children with autism spectrum disorders (ASD). Noise reduction by using nuisance variables has been shown to be necessary to minimize potential confounding effects of head motion and physiological signals on BOLD based FC analysis. The purpose of the present study is to systematically evaluate the effectiveness of different noise reduction strategies (NRS) using nuisance variables to improve perfusion based FC analysis in two cohorts of healthy adults using state of the art 3D background-suppressed (BS) GRASE pseudo-continuous ASL (pCASL) and dual-echo 2D-EPI pCASL sequences.

View Article and Find Full Text PDF

Brain tumor analysis is moving towards volumetric assessment of magnetic resonance imaging (MRI), providing a more precise description of disease progression to better inform clinical decision-making and treatment planning. While a multitude of segmentation approaches exist, inherent variability in the results of these algorithms may incorrectly indicate changes in tumor volume. In this work, we present a systematic approach to characterize variability in tumor boundaries that utilizes equivalence tests as a means to determine whether a tumor volume has significantly changed over time.

View Article and Find Full Text PDF

Background: Diffusion tensor imaging (DTI) permits quantitative examination within the pyramidal tract (PT) by measuring fractional anisotropy (FA). To the best of our knowledge, the inter-variability measures of FA along the PT remain unexplained. A clear understanding of these reference values would help radiologists and neuroscientists to understand normality as well as to detect early pathophysiologic changes of brain diseases.

View Article and Find Full Text PDF