Publications by authors named "Edgar R Arce-Santana"

Purpose: A semi-supervised two-step methodology is proposed to obtain a volumetric estimation of COVID-19-related lesions on Computed Tomography (CT) images.

Methods: First, damaged tissue was segmented from CT images using a probabilistic active contours approach. Second, lung parenchyma was extracted using a previously trained U-Net.

View Article and Find Full Text PDF

Electroencephalography (EEG) signals convey information related to different processes that take place in the brain. From the EEG fluctuations during sleep, it is possible to establish the sleep stages and identify short events, commonly related to a specific physiological process or pathology. Some of these short events (called A-phases) present an organization and build up the concept of the Cyclic Alternating Pattern (CAP) phenomenon.

View Article and Find Full Text PDF

A two-step method for obtaining a volumetric estimation of COVID-19 related lesion from CT images is proposed. The first step consists in applying a U-NET convolutional neural network to provide a segmentation of the lung-parenchyma. This architecture is trained and validated using the Thoracic Volume and Pleural Effusion Segmentations in Diseased Lungs for Benchmarking Chest CT Processing Pipelines (PleThora) dataset, which is publicly available.

View Article and Find Full Text PDF

A series of short events, called A-phases, can be observed in the human electroencephalogram (EEG) during Non-Rapid Eye Movement (NREM) sleep. These events can be classified in three groups (A1, A2, and A3) according to their spectral contents, and are thought to play a role in the transitions between the different sleep stages. A-phase detection and classification is usually performed manually by a trained expert, but it is a tedious and time-consuming task.

View Article and Find Full Text PDF

In medical imaging, the availability of robust and accurate automatic segmentation methods is very important for a user-independent and time-saving delineation of regions of interest. In this work, we present a new variational formulation for multiclass image segmentation based on active contours and probability density functions demonstrating that the method is fast, accurate, and effective for MRI brain image segmentation. We define an energy function assuming that the regions to segment are independent.

View Article and Find Full Text PDF

Time-deconvolution of the instrument response from fluorescence lifetime imaging microscopy (FLIM) data is usually necessary for accurate fluorescence lifetime estimation. In many applications, however, the instrument response is not available. In such cases, a blind deconvolution approach is required.

View Article and Find Full Text PDF

Multispectral fluorescence lifetime imaging (m-FLIM) can potentially allow identifying the endogenous fluorophores present in biological tissue. Quantitative description of such data requires estimating the number of components in the sample, their characteristic fluorescent decays, and their relative contributions or abundances. Unfortunately, this inverse problem usually requires prior knowledge about the data, which is seldom available in biomedical applications.

View Article and Find Full Text PDF

This paper proposes a new blind end-member and abundance extraction (BEAE) method for multispectral fluorescence lifetime imaging microscopy (m-FLIM) data. The chemometrical analysis relies on an iterative estimation of the fluorescence decay end-members and their abundances. The proposed method is based on a linear mixture model with positivity and sum-to-one restrictions on the abundances and end-members to compensate for signature variability.

View Article and Find Full Text PDF

In this paper a method based on mesh surfaces approximations for the 3D analysis of anatomical structures in Radiotherapy (RT) is presented. Parotid glands meshes constructed from Megavoltage CT (MVCT) images were studied in terms of volume, distance between center of mass (distCOM) of the right and left parotids, dice similarity coefficient (DICE), maximum distance between meshes (DMax) and the average symmetric distance (ASD). A comparison with the standard binary images approach was performed.

View Article and Find Full Text PDF

A novel method for approximate string matching with applications to bioinformatics is presented in this paper. Unlike most methods in the literature, the proposed method does not depend on the computation of the edit distance between two sequences, but uses instead a similarity index obtained by applying the phase correlation method. The resulting algorithm provides a finer control over the false positive rate, allowing users to pick out relevant matchings in less time, and can be applied for both offline and online processing.

View Article and Find Full Text PDF