The relative populations of Cu isomers depend to a great extent on the temperature. Density functional theory and nanothermodynamics can be combined to compute the geometrical optimization of isomers and their spectroscopic properties in an approximate manner. In this article, we investigate entropy-driven isomer distributions of Cu clusters and the effect of temperature on their IR spectra.
View Article and Find Full Text PDFIn this study, we report the lowest energy structure of bare Cu nanoclusters as a pair of enantiomers at room temperature. Moreover, we compute the enantiomerization energy for the interconversion from minus to plus structures in the chiral putative global minimum for temperatures ranging from 20 to 1300 K. Additionally, employing nanothermodynamics, we compute the probabilities of occurrence for each particular isomer as a function of temperature.
View Article and Find Full Text PDF