Despite advances in anaerobic digestion (AD), full-scale implementation faces significant challenges, particularly during the start-up phase, where inoculum selection is crucial. This study examines the impact of inoculum choice on the operational and economic performance of thermophilic digesters during the start-up phase. Methanogenic reactors R3 and R4 were inoculated with digested sludge (DiS) and diluted sewage sludge (DSS), respectively, and fed with hydrolyzed source-sorted organic fraction of municipal solid waste (SS-OFMSW) and thickened sewage sludge, which were processed in R1 and R2, serving as acidogenic reactors.
View Article and Find Full Text PDFThe application of sewage sludge to agricultural land is facing increasing restrictions due to concerns about various micropollutants, including polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs), per- and poly-fluoroalkyl substances (PFAS), and heavy metals (HMs). As an alternative approach to manage this residue, the use of pyrolysis, a process that transforms sludge into biochar, a carbon-rich solid material, is being explored. Despite the potential benefits of pyrolysis, there is limited data on its effectiveness in removing micropollutants and the potential presence of harmful elements in the resulting biochar.
View Article and Find Full Text PDFBiochar obtained from sewage sludge serves as a valuable soil amendment in agriculture, enhancing soil properties by increasing the nutrient content, cation exchange capacity, water retention, and oxygen transmission. However, its utilisation is hampered by the presence of micropollutants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and volatile organic compounds (VOCs). Previous studies indicate that the type and amount of micropollutants can be significantly adjusted by selecting the right process parameters.
View Article and Find Full Text PDFModeling and optimization are essential tasks that arise in the analysis and design of supply chains (SCs). SC models are essential for understanding emergent behavior such as transactions between participants, inherent value of products exchanged, as well as impact of externalities (e.g.
View Article and Find Full Text PDFLivestock operations have been highly intensified over the last decades, resulting in the advent of large concentrated animal feeding operations (CAFOs). Intensification decreases production costs but also leads to substantial environmental impacts. Specifically, nutrient runoff from livestock waste results in eutrophication, harmful algal blooms, and hypoxia.
View Article and Find Full Text PDFNutrient pollution of waterbodies is a major worldwide water quality problem. Excessive use and discharge of nutrients can lead to eutrophication and algal blooms in fresh and marine waters, resulting in environmental problems associated with hypoxia, public health issues related to the release of toxins and freshwater scarcity. A promising option to address this problem is the recovery of nutrient releases prior to being discharged into the environment.
View Article and Find Full Text PDFNutrient pollution is one of the major worldwide water quality problems, resulting in environmental and public health issues. Agricultural activities are the main source of nutrient release emissions, and the livestock industry has been proven to be directly related to the presence of high concentrations of phosphorus in the soil, which potentially can reach waterbodies by runoff. To mitigate the phosphorus pollution of aquatic systems, the implementation of nutrient recovery processes allows the capture of phosphorus, preventing its release into the environment.
View Article and Find Full Text PDF