Publications by authors named "Edgar Manrique"

Background: In the near future, the incidence of mosquito-borne diseases may expand to new sites due to changes in temperature and rainfall patterns caused by climate change. Therefore, there is a need to use recent technological advances to improve vector surveillance methodologies. Unoccupied Aerial Vehicles (UAVs), often called drones, have been used to collect high-resolution imagery to map detailed information on mosquito habitats and direct control measures to specific areas.

View Article and Find Full Text PDF

Disease control programs are needed to identify the breeding sites of mosquitoes, which transmit malaria and other diseases, in order to target interventions and identify environmental risk factors. The increasing availability of very-high-resolution drone data provides new opportunities to find and characterize these vector breeding sites. Within this study, drone images from two malaria-endemic regions in Burkina Faso and Côte d'Ivoire were assembled and labeled using open-source tools.

View Article and Find Full Text PDF
Article Synopsis
  • - Global health security faces challenges from vector-borne diseases like malaria and dengue, complicated by factors such as changing weather, human migration, and insect behavior, necessitating improved mosquito control methods.
  • - The integration of drones for mosquito surveillance and control could significantly enhance efforts amidst rising insecticide resistance and outdoor disease transmission, leveraging remote sensing and predictive modeling to identify hotspots.
  • - This review details a five-step strategy for environmental mapping with drones, highlighting both opportunities and challenges in usage, and presents case studies demonstrating the benefits of drones equipped with advanced camera technology.
View Article and Find Full Text PDF

The impact of human population movement (HPM) on the epidemiology of vector-borne diseases, such as malaria, has been described. However, there are limited data on the use of new technologies for the study of HPM in endemic areas with difficult access such as the Amazon. In this study conducted in rural Peruvian Amazon, we used self-reported travel surveys and GPS trackers coupled with a Bayesian spatial model to quantify the role of HPM on malaria risk.

View Article and Find Full Text PDF

Land-use practices such as agriculture can impact mosquito vector breeding ecology, resulting in changes in disease transmission. The typical breeding habitats of Africa's second most important malaria vector are large, semipermanent water bodies, which make them potential candidates for targeted larval source management. This is a technical workflow for the integration of drone surveys and mosquito larval sampling, designed for a case study aiming to characterise breeding sites near two villages in an agricultural setting in Côte d'Ivoire.

View Article and Find Full Text PDF

Human movement affects malaria epidemiology at multiple geographical levels; however, few studies measure the role of human movement in the Amazon Region due to the challenging conditions and cost of movement tracking technologies. We developed an open-source low-cost 3D printable GPS-tracker and used this technology in a cohort study to characterize the role of human population movement in malaria epidemiology in a rural riverine village in the Peruvian Amazon. In this pilot study of 20 participants (mean age = 40 years old), 45,980 GPS coordinates were recorded over 1 month.

View Article and Find Full Text PDF

To better estimate the travel time to the most proximate health care facility (HCF) and determine differences across heterogeneous land coverage types, this study explored the use of a novel cloud-based geospatial modeling approach. Geospatial data of 145,134 cities and villages and 8,067 HCF were gathered with land coverage types, roads and river networks, and digital elevation data to produce high-resolution (30 m) estimates of travel time to HCFs across Peru. This study estimated important variations in travel time to HCFs between urban and rural settings and major land coverage types in Peru.

View Article and Find Full Text PDF

In Amazonian Peru, the primary malaria vector, Nyssorhynchus darlingi (formerly Anopheles darlingi), is difficult to target using standard vector control methods because it mainly feeds and rests outdoors. Larval source management could be a useful supplementary intervention, but to determine its feasibility, more detailed studies on the larval ecology of Ny. darlingi are essential.

View Article and Find Full Text PDF

Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.

View Article and Find Full Text PDF