Neckar River virus (NRV), first isolated from a water sample of the Neckar River (Germany) in the 1980s, was serologically characterized as a novel tombusvirus. In this study, the complete genome sequence was determined, and an infectious full-length cDNA clone was constructed. The genome organization of NRV (DSMZ PV-0270) resembles that of tombusviruses.
View Article and Find Full Text PDFAsparagus samples were examined from growing areas of Germany and selected European as well as North, Central and South American countries. Overall, 474 samples were analyzed for Asparagus virus 1 (AV1) using DAS-ELISA. In our survey, 19 AV1 isolates were further characterized.
View Article and Find Full Text PDFIn the field of plant virology, the usage of reverse genetic systems has been reported for multiple purposes. One is understanding virus-host interaction by labelling viral cDNA clones with fluorescent protein genes to allow visual virus tracking throughout a plant, albeit this visualization depends on technical devices. Here we report the first construction of an infectious cDNA full-length clone of beet mosaic virus (BtMV) that can be efficiently used for Agrobacterium-mediated leaf inoculation with high infection rate in Beta vulgaris, being indistinguishable from the natural virus isolate regarding symptom development and vector transmission.
View Article and Find Full Text PDFBeet necrotic yellow vein virus (BNYVV) causes rhizomania disease in sugar beet (), which is controlled since more than two decades by cultivars harboring the resistance gene. The development of resistance-breaking strains has been favored by a high selection pressure on the soil-borne virus population. Resistance-breaking is associated with mutations at amino acid positions 67-70 (tetrad) in the RNA3 encoded pathogenicity factor P25 and the presence of an additional RNA component (RNA5).
View Article and Find Full Text PDFSince the first report in 2009, at least ten additional viruses have been identified and assigned to the proposed virus family Alternaviridae. Here we report two new mycoviruses tentatively assigned to this family, both identified as members of the fungal family Nectriaceae, which were isolated from surface-disinfected apple roots (Malus x domestica, Borkh.) affected by apple replant disease (ARD).
View Article and Find Full Text PDFThe fungus Ilyonectria pseudodestructans belongs to the family Nectriaceae and was found to be part of the endophytic microbiome of apple trees (Malus x domestica, Borkh.) with apple replant disease (ARD). After dsRNA extraction, a mycoviral infection became evident.
View Article and Find Full Text PDFThe A-type of beet necrotic yellow vein virus (BNYVV) is widely distributed in Europe and is one of the major virus types causing rhizomania disease in sugar beet. The closely related P-type is mainly limited to a small region in France (Pithiviers). Both virus types possess four RNAs (RNA1-4), but the P-type harbours an additional fifth RNA species (RNA5).
View Article and Find Full Text PDFIn this study, three new mycoviruses were identified co-infecting the apple replant disease (ARD)-associated root endophyte Rugonectria rugulosa. After dsRNA extraction, six viral fragments were visualized. Four fragments belong to a quadrivirus, which has a genome size of 17,166 bp.
View Article and Find Full Text PDFSpartina mottle virus (SpMV), an unassigned member of the family Potyviridae, has been known since 1980, when it was first described in England and Wales in symptomatic plants of the genus Spartina. In infected cells, flexuous particles and pinwheel inclusion bodies were found that resemble those of potyvirids. To date, the NCBI database contains only two partial sequences of a German (Nessmersiel) and an Italian (Assisi) isolate, suggesting that SpMV could be the first member of a new genus, called "Sparmovirus", in the family Potyviridae.
View Article and Find Full Text PDF(BNYVV) is causal agent of rhizomania disease, which is the most devastating viral disease in sugar beet production leading to a dramatic reduction in beet yield and sugar content. The virus is transmitted by the ubiquitous distributed soil-borne plasmodiophoromycete that infects the root tissue of young sugar beet plants. is the major resistance gene widely used in most sugar beet varieties to control BNYVV.
View Article and Find Full Text PDFRice bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) implies substantial yield loss to rice. In times of climate change, increasing temperatures are observed and further acceleration is expected worldwide.
View Article and Find Full Text PDFUsing next-generation sequencing to characterize agents associated with a severe stunting disease of parsley from Germany, we identified a hitherto undescribed virus. We sequenced total RNA and rolling-circle-amplified DNA from diseased plants. The genome sequence of the virus shows that it is a member of the genus Nanovirus, but it lacks DNA-U4.
View Article and Find Full Text PDFCelery latent virus (CeLV) is an incompletely described plant virus known to be sap and seed transmissible and to possess flexuous filamentous particles measuring about 900 nm in length, suggesting it as a possible member of the family Potyviridae. Here, an Italian isolate of CeLV was transmitted by sap to a number of host plants and shown to have a single-stranded and monopartite RNA genome being 11 519 nucleotides (nts) in size and possessing some unusual features. The RNA contains a large open reading frame (ORF) that is flanked by a short 5' untranslated region (UTR) of 13 nt and a 3' UTR consisting of 586 nt that is not polyadenylated.
View Article and Find Full Text PDFInfectious full-length clones of Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV), both genus Benyvirus, were used for fluorescent labelling with the objective to study their interaction in coinfection and superinfection experiments. Fluorescent labelling was achieved by replacing a part of the RNA2 encoded coat protein read-through domain with either GFP or mRFP fluorescent marker proteins. This resulted in a translational fusion comprising the coat and the fluorescent protein.
View Article and Find Full Text PDFRhizomania of sugar beet, caused by Beet necrotic yellow vein virus (BNYVV), is characterized by excessive lateral root (LR) formation leading to dramatic reduction of taproot weight and massive yield losses. LR formation represents a developmental process tightly controlled by auxin signaling through AUX/IAA-ARF responsive module and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcriptional network. Several LBD transcription factors play central roles in auxin-regulated LR development and act upstream of EXPANSINS (EXPs), cell wall (CW)-loosening proteins involved in plant development via disruption of the extracellular matrix for CW relaxation and expansion.
View Article and Find Full Text PDFTwo members of the Benyviridae family and genus Benyvirus, Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), possess identical genome organization, host range and high sequence similarity; they infect Beta vulgaris with variable symptom expression. In the US, mixed infections are described with limited information about viral interactions. Vectors suitable for agroinoculation of all genome components of both viruses were constructed by isothermal in vitro recombination.
View Article and Find Full Text PDFThe complete genome sequence of a German isolate of celery mosaic virus (CeMV, a potyvirus) from Quedlinburg (DSMZ PV-1003) was determined (MF962880). This represents the second fully sequenced genome of this virus, along with a Californian isolate (HQ676607.1).
View Article and Find Full Text PDFThe Partitiviridae is a family of small, isometric, non-enveloped viruses with bisegmented double-stranded (ds) RNA genomes of 3-4.8 kbp. The two genome segments are individually encapsidated.
View Article and Find Full Text PDFA Luminex xTAG-based assay for plant-infecting tospoviruses was developed. The test enables the detection of tospoviruses in general and the differentiation of the four important member species of this genus: Tomato spotted wilt virus, Impatiens necrotic spot virus, the proposed 'Capsicum chlorosis virus' and Watermelon silver mottle virus. The generic tospovirus primers used in this method are also applicable for detection of tospoviruses by basic RT-PCR.
View Article and Find Full Text PDFRice bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is responsible for substantial yield loss worldwide. Host resistance remains the most feasible control measure.
View Article and Find Full Text PDFLuffa aphid-borne yellows virus (LABYV) was proposed as the name for a previously undescribed polerovirus based on partial genome sequences obtained from samples of cucurbit plants collected in Thailand between 2008 and 2013. In this study, we determined the first full-length genome sequence of LABYV. Based on phylogenetic analysis and genome properties, it is clear that this virus represents a distinct species in the genus Polerovirus.
View Article and Find Full Text PDFPhylogenetic analyses have prompted a taxonomic reorganization of family Partitiviridae (encapsidated, bisegmented dsRNA viruses that infect plants, fungi, or protozoa), the focus of this review. After a brief introduction to partitiviruses, the taxonomic changes are discussed, including replacement of former genera Partitivirus, Alphacryptovirus, and Betacryptovirus, with new genera Alphapartitivirus, Betapartitivirus, Gammapartitivirus, and Deltapartitivirus, as well as redistribution of species among these new genera. To round out the review, other recent progress of note in partitivirus research is summarized, including discoveries of novel partitivirus sequences by metagenomic approaches and mining of sequence databases, determinations of fungal partitivirus particle structures, demonstrations of fungal partitivirus transmission to new fungal host species, evidence for other aspects of partitivirus-host interactions and host effects, and identification of other fungal or plant viruses with some similarities to partitiviruses.
View Article and Find Full Text PDFPlant-infecting viruses of the genera Alpha- and Betacryptovirus within the family Partitiviridae cause no visible effects on their hosts and are only transmitted by cell division and through gametes. The bipartite dsRNA genome is encoding a RNA-dependent RNA polymerase (RdRp) and a coat protein (CP). Aside from sequence and structural analysis, the investigation of protein interactions is another step towards virus characterization.
View Article and Find Full Text PDFThe family Partitiviridae includes plant (Alphacryptovirus and Betacryptovirus), fungal (Partitivirus) and protozoan (Cryspovirus) viruses with bisegmented dsRNA genomes and isometric virions. Cryptic viruses commonly occur in different plant species without causing any symptoms. So far, numerous sequences have been determined for viruses of the genus Alphacryptovirus, but no sequence is available for any assigned member of the genus Betacryptovirus.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
July 2013
Several pectolytic bacterial strains, mainly isolated from monocotyledonous plants and previously identified as Pectobacterium carotovorum, were thought to belong to a novel species after several taxonomic analyses including DNA-DNA hybridization. In 16S rRNA gene sequence analyses, these strains had a similarity of >97.9 % to the 16S rRNA gene sequence of strains representing six other pectobacterial species and subspecies.
View Article and Find Full Text PDF