Four metalloporphyrinic metal-organic frameworks (MOFs) were successfully synthesized and exhibited enhanced activities for the photooxidation of a sulfur mustard simulant, 2-chloroethyl ethyl sulfide (CEES). Among them, a Sn-porphyrin functionalized 2D MOF, namely CSLA-21-NH(Sn), showed a half-life of 1.5 min for CEES oxidation under blue LED, featuring as one of the fastest photocatalysts for CEES degradation.
View Article and Find Full Text PDFThe swift and deadly spread of infectious diseases, alongside the rapid advancement of scientific technology in the past several centuries, has led to the invention of various methods for protecting people from infection. In recent years, a class of crystalline porous materials, metal-organic frameworks (MOFs), has shown great potential in constructing defense systems against infectious diseases. This review addresses current approaches to combating infectious diseases through the utilization of MOFs in vaccine development, antiviral and antibacterial treatment, and personal protective equipment (PPE).
View Article and Find Full Text PDFPorphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks.
View Article and Find Full Text PDF