Human primary visual cortex (V1) responds more strongly, or resonates, when exposed to ∼10, ∼15-20, and ∼40-50 Hz rhythmic flickering light. Full-field flicker also evokes the perception of hallucinatory geometric patterns, which mathematical models explain as standing-wave formations emerging from periodic forcing at resonant frequencies of the simulated neural network. However, empirical evidence for such flicker-induced standing waves in the visual cortex was missing.
View Article and Find Full Text PDFSleep consists of two basic stages: non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM sleep is characterized by slow high-amplitude cortical electroencephalogram (EEG) signals, while REM sleep is characterized by desynchronized cortical rhythms. Despite this, recent electrophysiological studies have suggested the presence of slow waves (SWs) in local cortical areas during REM sleep.
View Article and Find Full Text PDFMemory formation is hypothesized to involve the generation of event-specific neural activity patterns during learning and the subsequent spontaneous reactivation of these patterns. Here, we present evidence that these processes can also be observed in urethane-anesthetized rats and are enhanced by desynchronized brain state evoked by tail pinch, subcortical carbachol infusion, or systemic amphetamine administration. During desynchronization, we found that repeated tactile or auditory stimulation evoked unique sequential patterns of neural firing in somatosensory and auditory cortex and that these patterns then reoccurred during subsequent spontaneous activity, similar to what we have observed in awake animals.
View Article and Find Full Text PDF