Objectives: Digital infrared thermography is a noninvasive tool used for assessing diseases, including the diabetic foot. This study aims to analyze thermal patterns of the foot sole in patients with type 2 diabetes mellitus using thermography and explore correlations with clinical variables. Additionally, a machine learning approach was developed for classification.
View Article and Find Full Text PDFThe purpose of this research is to introduce an approach to assist the diagnosis of Parkinson's disease (PD) by classifying (fNIRS) studies as PD positive or negative. fNIRS is a non-invasive optical signal modality that conveys the brain's hemodynamic response, specifically changes in blood oxygenation in the cerebral cortex; and its potential as a tool to assist PD detection deserves to be explored since it is non-invasive and cost-effective as opposed to other neuroimaging modalities. Besides the integration of fNIRS and machine learning, a contribution of this work is that various approaches were implemented and tested to find the implementation that achieves the highest performance.
View Article and Find Full Text PDFNeurophotonics
April 2024
Significance: People with Parkinson's disease (PD) experience changes in fine motor skills, which is viewed as one of the hallmark signs of this disease. Due to its non-invasive nature and portability, functional near-infrared spectroscopy (fNIRS) is a promising tool for assessing changes related to fine motor skills.
Aim: We aim to compare activation patterns in the primary motor cortex using fNIRS, comparing volunteers with PD and sex- and age-matched control participants during a fine motor task and walking.
Excess fat in abdominal deposits is a risk factor for multiple conditions, including metabolic syndrome (MetS); lipid metabolism plays an essential role in these pathologies; fatty acid-binding proteins (FABPs) are dedicated to the cytosolic transport of fat. FABP4, whose primary source is adipose tissue, is released into the circulation, acting as an adipokine, while FABP5 also accompanies the adverse effects of MetS. FABP4 and 5 are potential biomarkers of MetS, but their behavior during syndrome evolution has not been determined.
View Article and Find Full Text PDFThis letter aims to reply to Bratchenko and Bratchenko's comment on our paper "Feasibility of Raman spectroscopy as a potential in vivo tool to screen for pre-diabetes and diabetes." Our paper analyzed the feasibility of using in vivo Raman measurements combined with machine learning techniques to screen diabetic and prediabetic patients. We argued that this approach yields high overall accuracy (94.
View Article and Find Full Text PDFIn this article, we investigated the feasibility of using Raman spectroscopy and multivariate analysis method to noninvasively screen for prediabetes and diabetes in vivo. Raman measurements were performed on the skin from 56 patients with diabetes, 19 prediabetic patients and 32 healthy volunteers. These spectra were collected along with reference values provided by the standard glycated hemoglobin (HbA1c) assay.
View Article and Find Full Text PDFParkinson's disease (PD) is one of the most common neurological pathologies with a high prevalence worldwide. PD is characterized by Lewy bodies, whose major component is the aggregates of α-synuclein (αSyn) protein. Interestingly, recent works have demonstrated that skin biopsy studies are a promising diagnostic tool for evaluating α-synucleinopathies.
View Article and Find Full Text PDFA nanoparticle's shape and size determine its optical properties. Nanorods are nanoparticles that have double absorption bands associated to surface plasmon oscillations along their two main axes. In this work, we analize the optical response of gold nanorods with numerical simulations and spectral absorption measurements to evaluate their local field enhancement-which is key for surface-enhanced Raman spectroscopic (SERS) applications.
View Article and Find Full Text PDFAdipose tissue presents structural and functional changes in obesity and type 1 diabetes mellitus (T1DM). In obesity, the size and number of adipocytes and adipokine secretion increases. In T1DM, a loss of adipose tissue suggests changes in the metabolic activity of this tissue.
View Article and Find Full Text PDFWe show the spectra of advanced glycation products in response to recent comments made by Bratchenko . Our results suggest that information retrieved by Raman spectroscopy is relevant to screening diabetic patients, however, the comparison carried out in our paper, between ANN and SVM, was not fair, because of the erroneous PCA selection procedure and different sources of variation present in the analysis.
View Article and Find Full Text PDFThere have been different efforts to predict epileptic seizures and most of them are based on the analysis of electroencephalography (EEG) signals; however, recent publications have suggested that functional Near-Infrared Spectroscopy (fNIRS), a relatively new technique, could be used to predict seizures. The objectives of this research are to show that the application of fNIRS to epileptic seizure detection yields results that are superior to those based on EEG and to demonstrate that the application of deep learning to this problem is suitable given the nature of fNIRS recordings. A Convolutional Neural Network (CNN) is applied to the prediction of epileptic seizures from fNIRS signals, an optical modality for recording brain waves.
View Article and Find Full Text PDFBackground: Ablative fractional laser surgery is a common technique for treating acne scars. However, an in vivo and noninvasive analysis of the histologic variations between acne skin and the resulting resurfaced skin is needed in order to evaluate the wound healing process of the scars induced by the ablative fractional laser surgery.
Materials And Methods: Nine patients with acne scars underwent a single treatment with a CO ablative fractional laser surgery.
Breast cancer is one of the major causes of death for women. Temperature measurement is advantageous because it is non-invasive, non-destructive, and cost-effective. Temperature measurement through infrared thermography is useful to detect changes in blood perfusion that can occur due to inflammation, angiogenesis, or other pathological causes.
View Article and Find Full Text PDFType 2 diabetes mellitus (DM2) is one of the most widely prevalent diseases worldwide and is currently screened by invasive techniques based on enzymatic assays that measure plasma glucose concentration in a laboratory setting. A promising plan of action for screening DM2 is to identify molecular signatures in a non-invasive fashion. This work describes the application of portable Raman spectroscopy coupled with several supervised machine-learning techniques, to discern between diabetic patients and healthy controls (Ctrl), with a high degree of accuracy.
View Article and Find Full Text PDFVery preterm newborns have an increased risk of developing an inflammatory cerebral white matter injury that may lead to severe neuro-cognitive impairment. In this study we performed functional connectivity (fc) analysis using resting-state optical imaging of intrinsic signals (rs-OIS) to assess the impact of inflammation on resting-state networks (RSN) in a pre-clinical model of perinatal inflammatory brain injury. Lipopolysaccharide (LPS) or saline injections were administered in postnatal day (P3) rat pups and optical imaging of intrinsic signals were obtained 3 weeks later.
View Article and Find Full Text PDFBackground: The precise assessment of cerebral saturation changes during an inflammatory injury in the developing brain, such as seen in periventricular leukomalacia, is not well defined. This study investigated the impact of inflammation on locoregional cerebral oxygen saturation in a newborn rodent model using photoacoustic imaging.
Methods: 1 mg/kg of lipopolysaccharide(LPS) diluted in saline or saline alone was injected under ultrasound guidance directly in the corpus callosum of P3 rat pups.
This study aims to assess the impact of unilateral increases in carotid stiffness on cortical functional connectivity measures in the resting state. Using a novel animal model of induced arterial stiffness combined with optical intrinsic signals and laser speckle imaging, resting state functional networks derived from hemodynamic signals are investigated for their modulation by isolated changes in stiffness of the right common carotid artery. By means of seed-based analysis, results showed a decreasing trend of homologous correlation in the motor and cingulate cortices.
View Article and Find Full Text PDFBackground: Functional electrical stimulation (FES) has been found to be effective in restoring voluntary functions after spinal cord injury (SCI) and stroke. However, the central nervous system (CNS) changes that occur in as a result of this therapy are largely unknown.
Objective: To examine the effects of FES on the restoration of voluntary locomotor function of the CNS in a SCI rat model.
The potential of intrinsic optical imaging and resting-state analysis under anesthetized conditions as a tool to study brain networks associated with epileptic seizures is investigated. Using an acute model of epileptiform activity, the 4-aminopyridine model in live mice, we observe the changes in resting-state networks with the onset of seizure activity and in conditions of spiking activity. Resting-state networks identified before and after the onset of epileptiform activity show both decreased and increased homologous correlations, with a small dependence on seizure intensity.
View Article and Find Full Text PDFBackground: Arterial stiffness has been identified as an important risk factor for cognitive decline. However, its effects on the brain's health are unknown, and there is no animal model available to study the precise impact of arterial stiffness on the brain. Therefore, the objective of the study was to develop and characterize a new model specific to arterial stiffness in order to study its effects on the brain.
View Article and Find Full Text PDFIntrinsic optical imaging (IOI) has emerged as a very powerful tool to assess neuronal function in small animals. Although it has been used extensively in the brain, its application to the spinal cord is rare. The inability of intrinsic optical techniques to resolve different depths and embedded gray matter hampers their capacity to distinguish larger vasculature contributions of hemodynamic signals originating from motoneuron and interneuron activation.
View Article and Find Full Text PDF