Polymer toughness is preserved at chronic timepoints in a new class of modulus-changing bioelectronics, which hold promise for commercial chronic implant components such as spinal cord stimulation leads. The underlying ester-free chemical network of the polymer substrate enables device rigidity during implantation, soft, compliant, conforming structures during acute phases in vivo, and gradual stabilization of materials properties chronically, maintaining materials toughness as device stiffness changes. In the past, bioelectronics device designs generally avoided modulus-changing and materials due to the difficulty in demonstrating consistent, predictable performance over time in the body.
View Article and Find Full Text PDFPseudomonas aeruginosa glutamyl-tRNA synthetase (GluRS) was overexpressed in Escherichia coli. Sequence analysis indicated that P. aeruginosa GluRS is a discriminating GluRS and, similar to other GluRS proteins, requires the presence of tRNA(Glu) to produce a glutamyl-AMP intermediate.
View Article and Find Full Text PDF