Purpose: The aim of this work is to describe the clinical implementation of respiratory-gated spot-scanning proton therapy (SSPT) for the treatment of thoracic and abdominal moving targets. The experience of our institution is summarized, from initial acceptance and commissioning tests to the development of standard clinical operating procedures for simulation, motion assessment, motion mitigation, treatment planning, and gated SSPT treatment delivery.
Materials And Methods: A custom respiratory gating interface incorporating the Real-Time Position Management System (RPM, Varian Medical Systems, Inc.
The objective of this study was to assess the recommended DVH parameter (e.g., D2 cc) addition method used for combining EBRT and HDR plans, against a reference dataset generated from an EQD2-based DVH addition method.
View Article and Find Full Text PDFPurpose: To quantify improvement in target conformity in brain and head and neck tumor treatments resulting from the use of a dynamic collimation system (DCS) with two spot scanning proton therapy delivery systems (universal nozzle, UN, and dedicated nozzle, DN) with median spot sizes of 5.2 and 3.2 mm over a range of energies from 100 to 230 MeV.
View Article and Find Full Text PDFPurpose: To quantify the dosimetric benefit of using a dynamic collimation system (DCS) for penumbra reduction during the treatment of brain tumors by pencil beam scanning proton therapy (PBS PT).
Methods And Materials: Collimated and uncollimated brain treatment plans were created for 5 patients previously treated with PBS PT and retrospectively enrolled in an institutional review board-approved study. The in-house treatment planning system, RDX, was used to generate the plans because it is capable of modeling both collimated and uncollimated beamlets.
The use of collimator or aperture may sharpen the lateral dose gradient for spot scanning proton therapy. However, to date, there has not been a standard method to determine the aperture margin for a single field in collimated spot scanning proton therapy. This study describes a theoretical framework to select the optimal aperture margin for a single field, and also presents the spot spacing limit required such that the optimal aperture margin exists.
View Article and Find Full Text PDFPurpose: To introduce a method to model the 3D dose distribution of laterally asymmetric proton beamlets resulting from collimation. The model enables rapid beamlet calculation for spot scanning (SS) delivery using a novel penumbra-reducing dynamic collimation system (DCS) with two pairs of trimmers oriented perpendicular to each other.
Methods: Trimmed beamlet dose distributions in water were simulated with MCNPX and the collimating effects noted in the simulations were validated by experimental measurement.