Publications by authors named "Edgar G Estupinan"

Production of OH in the reaction of the neopentyl radical with O2 has been measured by a laser photolysis/cw absorption method for various pressures and oxygen concentrations at 673, 700, and 725 K. The MIT Reaction Mechanism Generator (RMG) was used to automatically generate a model for this system, and the predicted OH concentration profiles are compared to present and literature experimental results. Several reactions significantly affect the OH profile.

View Article and Find Full Text PDF

Time-resolved production of HO2 and DO2 from the reactions of nondeuterated and deuterated ethyl and propyl radicals with O2 are measured as a function of temperature and pressure in the "transition region" between 623 and 748 K using the technique of laser photolysis/long path frequency modulation spectroscopy. Experimental measurements, using both pulsed-photolytic Cl-atom-initiated oxidation of ethane and propane and direct photolysis of ethyl, n-propyl, and isopropyl iodides, are compared to kinetic models based on the results of time-dependent master equation calculations with ab initio characterization of stationary points. The formation of DO2 and HO2 from the subsequent reaction of the alkyl radicals with O2 is followed by infrared frequency modulation spectroscopy.

View Article and Find Full Text PDF

The formation of HO(2) in the reactions of C(2)H(5), n-C(3)H(7), and i-C(3)H(7) radicals with O(2) is investigated using the technique of laser photolysis/long-path frequency-modulation spectroscopy. The alkyl radicals are formed by 266 nm photolysis of alkyl iodides. The formation of HO(2) from the subsequent reaction of the alkyl radicals with O(2) is followed by infrared frequency-modulation spectroscopy.

View Article and Find Full Text PDF