Publications by authors named "Edgar Figueroa Ochoa"

Article Synopsis
  • New asphalt mixtures have been enhanced with various fibers, leading to lower temperatures and energy usage during production while also improving durability and environmental impact.
  • The study focuses on analyzing different cellulose sources (bagasse, corrugated paperboard, and commercial cellulose) to assess their effectiveness as drainage inhibitors in Stone Mastic Asphalt.
  • Findings indicate that although all cellulose types have similar properties, corrugated paperboard is the most efficient option at lower concentrations due to its unique morphological characteristics and lignin content.
View Article and Find Full Text PDF

Nanocomposites prepared with a terpolymer of poly(L-lactide) (PLLA)-poly(ε-caprolactone) (PCL)-poly(ethylene glycol) (PEG) and partially oxidized carbon nanotubes (CNTs) were synthesized and characterized to evaluate their ability to act as an effective nanocarrier of the anticancer drug methotrexate. The homopolymers of PLLA and PCL were synthesized through ring-opening polymerization (ROP) and characterized through gel permeation chromatography (GPC). The PLLA-PCL-PEG terpolymers were synthesized through a four-step chemical route using oxalyl chloride as a linker agent and analyzed with H-NMR, C-NMR, and FTIR spectroscopies.

View Article and Find Full Text PDF

Polysaccharide-based nanogels offer a wide range of chemical compositions and are of great interest due to their biodegradability, biocompatibility, non-toxicity, and their ability to display pH, temperature, or enzymatic response. In this work, we synthesized monodisperse and tunable pH-sensitive nanogels by crosslinking, through reductive amination, chitosan and partially oxidized maltodextrins, by keeping the concentration of chitosan close to its overlap concentration, i.e.

View Article and Find Full Text PDF

Breast cancer (BC) has surpassed lung cancer as the most diagnosed cancer and, in terms of mortality, is the fifth leading cause with 684,996 new deaths (6.7% of all cancer-related deaths) and the highest mortality amongst all cancers (15.5%) in women.

View Article and Find Full Text PDF

A detailed study of the different structural transitions of the triblock copolymer PEO-PPO-PEO (P104) in water, in the dilute and semi-dilute regions, is addressed here as a function of temperature and P104 concentration (C) by mean of complimentary methods: viscosimetry, densimetry, dynamic light scattering, turbidimetry, polarized microscopy, and rheometry. The hydration profile was calculated through density and sound velocity measurements. It was possible to identify the regions where monomers exist, spherical micelle formation, elongated cylindrical micelles formation, clouding points, and liquid crystalline behavior.

View Article and Find Full Text PDF

The potential application of biodegradable and biocompatible polymeric micelles formed by Pluronic F127 and P104 as nanocarriers of the antineoplastic drugs docetaxel (DOCE) and doxorubicin (DOXO) is presented in this work. The release profile was carried out under sink conditions at 37 °C and analyzed using the Higuchi, Korsmeyer-Peppas, and Peppas-Sahlin diffusion models. The cell viability of HeLa cells was evaluated using the proliferation cell counting kit CCK-8 assay.

View Article and Find Full Text PDF

Coagulative nucleation in the copolymerization of methyl methacrylate-butyl acrylate (MMA-BA) via semicontinuous emulsion heterophase polymerization (SEHP) under monomer-starved conditions in latexes with high solid content (50.0 wt %) and low concentrations of surfactant is reported. The SEHP technique allows the obtention of latex with high colloidal stability and has potential industrial application in polymer synthesis.

View Article and Find Full Text PDF

A multilevel factorial design of 2 with 12 experiments was developed for the preparation of cellulose nanocrystals (CNC) from Weber var. Azul bagasse, an agro-industrial waste from tequila production. The studied parameters were acid type (HSO and HCl), acid concentration (60 and 65 wt% for HSO, 2 and 8N for HCl) temperature (40 and 60 °C for HSO, 50 and 90 °C for HCl), and hydrolysis time (40, 55 and 70 min for HSO; and 30, 115 and 200 min for HCl).

View Article and Find Full Text PDF

Vectorization has experienced significant development over the last few years and has been used to control the distribution of active ingredients to a target by their association with a vector. However, controlled drug delivery suffers from "burst release" as the drugs are released before the targeted site. Very few studies have examined the collective mechanisms of fission-fusion on micelles in the transport and expulsion of active ingredients.

View Article and Find Full Text PDF

The use of colloidal particles (CPs) in the transport of drugs is developing rapidly thanks to its effectiveness and biosafety, especially in the treatment of various types of cancer. In this study Rose Bengal/PLGA CPs synthesized by double emulsion (W/O/W) and by electrostatic adsorption (layer-by-layer), were characterized and evaluated as potential breast cancer treatment. CPs were evaluated in terms of size, zeta potential, drug release kinetics and cell viability inhibition efficacy with the triple negative breast cancer cell line HCC70.

View Article and Find Full Text PDF

In this work, we present a detailed study of the potential application of polymeric micelles and gels of four different reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) copolymers (BOnEOmBOn, where n denotes the respective block lengths), specifically BO8EO90BO8, BO14EO378BO14, BO20EO411BO20 and BO21EO385BO21, as effective drug transport nanocarriers. In particular, we tested the use of this kind of polymeric nanostructures as reservoirs for the sustained delivery of the antifungals griseofulvin and fluconazole for oral and topical administration. Polymeric micelles and gels formed by these copolymers were shown to solubilize important amounts of these two drugs and to have a good stability in physiologically relevant conditions for oral or topical administration.

View Article and Find Full Text PDF

Amphiphilic block copolymers have emerged during last years as a fascinating substrate material to develop micellar nanocontainers able to solubilize, protect, transport, and release under external or internal stimuli different classes of cargos to diseased cells or tissues. However, this class of materials can also induce biologically relevant actions, which complement the therapeutic activity of their cargo molecules through their mutual interactions with biologically relevant entities (cellular membranes, proteins, organelles..

View Article and Find Full Text PDF

Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations.

View Article and Find Full Text PDF