Phosphatidylethanolamine (PE) and Phosphatidylcholine (PC) are the most abundant glycerophospholipids in eukaryotic membranes. The differences in the physicochemical properties of their headgroups have contrasting modulatory effects on their interaction with intracellular macromolecules. As such, their overall impact on membrane structure and function differs significantly.
View Article and Find Full Text PDFDiacylglycerol pyrophosphate (DGPP) is an anionic phospholipid formed in plants, yeast, and parasites under multiple stress stimuli. It is synthesized by the phosphorylation action of phosphatidic acid (PA) kinase on phosphatidic acid, a signaling lipid with multifunctional properties. PA functions in the membrane through the interaction of its negatively charged phosphomonoester headgroup with positively charged proteins and ions.
View Article and Find Full Text PDFCurr Top Membr
December 2021
Liquid-liquid phase separation (LLPS) is a ubiquitous process that drives the formation of membrane-less intracellular compartments. This compartmentalization contains vastly different protein/RNA/macromolecule concentrations compared to the surrounding cytosol despite the absence of a lipid boundary. Because of this, LLPS is important for many cellular signaling processes and may play a role in their dysregulation.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
November 2021
Phosphoinositides are found in low concentration in cellular membranes but perform numerous functions such as signaling, membrane trafficking, protein recruitment and modulation of protein activity. Spatiotemporal regulation by enzymes that phosphorylate and dephosphorylate the inositol ring results in the production of seven distinct and functionally diverse derivatives. Ionization properties of the phosphorylated headgroups of anionic lipids have been shown to impact how they interact with proteins and lipids in the membrane.
View Article and Find Full Text PDFProtein-lipid interactions govern the structure and function of lipoprotein particles, which transport neutral lipids and other hydrophobic cargo through the blood stream. Apolipoproteins cover the surface of lipoprotein particles, including low-density (LDL) and high-density (HDL) lipoproteins, and determine their function. Previous work has focused on small peptides derived from these apolipoproteins or used such artificial lipid systems as Langmuir monolayers or the lipid disc assay to determine how apolipoproteins interact with the neutral lipid interface.
View Article and Find Full Text PDFLipid droplets (LDs) are ubiquitously expressed organelles; the only intracellular organelles that contain a lipid monolayer rather than a bilayer. Proteins localize and bind to this monolayer as they do to intracellular lipid bilayers. The mechanism by which cytosolic LD binding proteins recognize, and bind, to this lipid interface remains poorly understood.
View Article and Find Full Text PDFEpsin-like Clathrin Adaptor 1 (ECA1/ PICALM1A) is an A/ENTH domain protein that acts as an adaptor protein in clathrin-mediated endocytosis. ECA1 is recruited to the membrane during salt stress signaling in plants in a phosphatidic acid (PA)-dependent manner. PA is a lipid second messenger that rapidly and transiently increases in concentration under stress stimuli.
View Article and Find Full Text PDFThe organization of multiple subcellular compartments is controlled by liquid-liquid phase separation. Phase separation of this type occurs with the emergence of interfacial tension. Aqueous two-phase systems formed by two non-ionic polymers can be used to separate and analyze biological macromolecules, cells and viruses.
View Article and Find Full Text PDFUnicellular flagellates that make up the class Kinetoplastida include multiple parasites responsible for public health concerns, including Trypanosoma brucei and T. cruzi (agents of African sleeping sickness and Chagas disease, respectively), and various Leishmania species, which cause leishmaniasis. These diseases are generally difficult to eradicate, with treatments often having lethal side effects and/or being effective only during the acute phase of the diseases, when most patients are still asymptomatic.
View Article and Find Full Text PDFThe phosphoinositide, phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P), is a key signaling lipid in the inner leaflet of the cell plasma membrane, regulating diverse signaling pathways including cell growth and migration. In this study we investigate the impact of the hydrogen-bond donor lipids phosphatidylethanolamine (PE) and phosphatidylinositol (PI) on the charge and phase behavior of PI(3,4,5)P. PE and PI can interact with PI(3,4,5)P through hydrogen-bond formation, leading to altered ionization behavior and charge distribution within the PI(3,4,5)P headgroup.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2018
Lipid droplets are "small" organelles that play an important role in de novo synthesis of new membrane, and steroid hormones, as well as in energy storage. The way proteins interact specifically with the oil-(phospho-)lipid monolayer interface of lipid droplets is a relatively unexplored but crucial question. Here, we use our home built liquid droplet tensiometer to mimic intracellular lipid droplets and study protein-lipid interactions at this interface.
View Article and Find Full Text PDFMarburg virus (MARV) is a lipid-enveloped virus from the family containing a negative sense RNA genome. One of the seven MARV genes encodes the matrix protein VP40, which forms a matrix layer beneath the plasma membrane inner leaflet to facilitate budding from the host cell. MARV VP40 (mVP40) has been shown to be a dimeric peripheral protein with a broad and flat basic surface that can associate with anionic phospholipids such as phosphatidylserine.
View Article and Find Full Text PDFPhosphatidic acid (PA) is a crucial membrane phospholipid involved in de novo lipid synthesis and numerous intracellular signaling cascades. The signaling function of PA is mediated by peripheral membrane proteins that specifically recognize PA. While numerous PA-binding proteins are known, much less is known about what drives specificity of PA-protein binding.
View Article and Find Full Text PDFLipid droplets (LDs) are organelles that contribute to various cellular functions that are vital for life. Aside from acting as a neutral lipid storage depot, they are also involved in building new membranes, synthesis of steroid hormones, and cell signaling. Many aspects of LD structure and function are not yet well-understood.
View Article and Find Full Text PDFPhosphatidic acid (PA) is an important signalling lipid involved in various stress-induced signalling cascades. Two SnRK2 protein kinases (SnRK2.4 and SnRK2.
View Article and Find Full Text PDFAs an intracellular organelle, phospholipid-coated lipid droplets have shown increasing importance due to their expanding biological functions other than the lipid storage. The growing biological significance necessitates a close scrutiny on lipid droplets, which have been proposed to mature in a cell through processes such as fusion. Unlike phospholipid vesicles that are well-known to fuse through docking and hemifusion steps, little is known on the fusion of lipid droplets.
View Article and Find Full Text PDFPhosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) is an important signaling lipid and plays a crucial role in a wide variety of cellular processes by interacting with protein targets and localizing proteins at the plasma membrane. These interactions are strongly influenced by the lateral distribution of PI(4,5)P2 as well as its ionization state. The characterization of the PI(4,5)P2 ionization state provides important information about how PI(4,5)P2 interacts with other membrane resident or associated chemical species.
View Article and Find Full Text PDFNeutral lipid transport in mammals is complicated involving many types of apolipoprotein. The exchangeable apolipoproteins mediate the transfer of hydrophobic lipids between tissues and particles, and bind to cell surface receptors. Amphipathic α-helices form a common structural motif that facilitates their lipid binding and exchangeability.
View Article and Find Full Text PDFDetailed knowledge of the degree of ionization of lipid titratable groups is important for the evaluation of protein-lipid and lipid-lipid interactions. The degree of ionization is commonly evaluated by acid-base titration, but for lipids localized in a multicomponent membrane interface this is not a suitable technique. For phosphomonoester-containing lipids such as the polyphosphoinositides, phosphatidic acid, and ceramide-1-phosphate, this is more conveniently accomplished by (31)P NMR.
View Article and Find Full Text PDFThe signaling lipid phosphatidic acid (PA) is believed to interact specifically with membrane-bound globular proteins through a combination of electrostatic interactions and hydrogen bond formation known as the electrostatic-hydrogen bond switch. PA, which adjusts its protonation state according to the ambient pH, is able to regulate protein binding under physiological conditions in a pH-dependent manner. We investigate the question to what extent the electrostatic-hydrogen bond switch contributes to the pH-sensitivity of protein binding.
View Article and Find Full Text PDFPhosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)) is an important lipidic signaling molecule that is involved in a broad range of cellular processes. Its interaction with proteins and its lateral distribution are governed by the ionization state of the phosphomonoester groups and its ability to form intra- and intermolecular hydrogen bonds. In this study we have investigated the ionization state of PI(4,5)P(2) in ternary lipid vesicle systems that contain in addition to PI(4,5)P(2) and phosphatidylcholine (PC) either phosphatidylethanolamine (PE), phosphatidylserine (PS) or phosphatidylinositol (PI).
View Article and Find Full Text PDFPhosphatidic acid (PA) is a lipid second messenger that is formed transiently in plants in response to different stress conditions, and plays a role in recruiting protein targets, ultimately enabling an adequate response. Intriguingly, this increase in PA concentration in plants is generally followed by an increase in the phospholipid diacylglycerolpyrophosphate (DGPP), via turnover of PA. Although DGPP has been shown to induce stress-related responses in plants, it is unclear to date what its molecular function is and how it exerts its effect.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2011
Cell membrane phospholipids, like phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], can regulate epithelial Na channel (ENaC) activity. Gender differences in lung ENaC expression have also been demonstrated. However, the effects in vivo on alveolar fluid clearance are uncertain.
View Article and Find Full Text PDFThe dissociation state of phosphatidic acid (PA) in a lipid bilayer is governed by the competition of proton binding and formation of a hydrogen bond through a mechanism termed the electrostatic-hydrogen bond switch. This mechanism has been suggested to provide the basis for the specific recognition of PA by proteins. Even in bare lipid bilayers the electrostatic-hydrogen bond switch is present if the membrane contains lipids like phosphatidylethanolamine that act as hydrogen bond donors.
View Article and Find Full Text PDF