Publications by authors named "Edgar E Galindo-Leon"

Parkinson's disease (PD) is characterized by the disruption of repetitive, concurrent and sequential motor actions due to compromised timing-functions principally located in cortex-basal ganglia (BG) circuits. Increasing evidence suggests that motor impairments in untreated PD patients are linked to an excessive synchronization of cortex-BG activity at beta frequencies (13-30 Hz). Levodopa and subthalamic nucleus deep brain stimulation (STN-DBS) suppress pathological beta-band reverberation and improve the motor symptoms in PD.

View Article and Find Full Text PDF
Article Synopsis
  • Intrinsic coupling modes (ICMs) in brain activity can be divided into two types: phase ICMs and envelope ICMs, with their principles still not fully understood, especially regarding their connection to brain structure.
  • Researchers studied the relationship between ICMs, measured through micro-ECoG arrays, and the brain's structural connectivity using high-resolution diffusion MRI in ferrets.
  • The findings reveal that both ICM types correlate with structural connectivity, particularly at higher frequencies, but the strength of this relationship varies; phase ICMs show a unique correlation pattern when adjusting for zero-lag coupling effects.
View Article and Find Full Text PDF

Intrinsically generated patterns of coupled neuronal activity are associated with the dynamics of specific brain states. Sensory inputs are extrinsic factors that can perturb these intrinsic coupling modes, creating a complex scenario in which forthcoming stimuli are processed. Studying this intrinsic-extrinsic interplay is necessary to better understand perceptual integration and selection.

View Article and Find Full Text PDF

The rapidly increasing use of the local field potential (LFP) has motivated research to better understand its relation to the gold standard of neural activity, single unit (SU) spiking. We addressed this in an in vivo, awake, restrained mouse auditory cortical electrophysiology preparation by asking whether the LFP could actually be used to predict stimulus-evoked SU spiking. Implementing a Bayesian algorithm to predict the likelihood of spiking on a trial by trial basis from different representations of the despiked LFP signal, we were able to predict, with high quality and fine temporal resolution (2 ms), the time course of a SU's excitatory or inhibitory firing rate response to natural species-specific vocalizations.

View Article and Find Full Text PDF

The interplay between excitation and inhibition in the auditory cortex is crucial for the processing of acoustic stimuli. However, the precise role that inhibition plays in the distributed cortical encoding of natural vocalizations has not been well studied. We recorded single units (SUs) and local field potentials (LFPs) in the awake mouse auditory cortex while presenting pup isolation calls to animals that either do (mothers) or do not (virgins) recognize the sounds as behaviorally relevant.

View Article and Find Full Text PDF