Proc Natl Acad Sci U S A
November 2023
Coordinated pair bonds are common in birds and also occur in many other taxa. How do animals solve the social dilemmas they face in coordinating with a partner? We developed an evolutionary model to explore this question, based on observations that a) neuroendocrine feedback provides emotional bookkeeping which is thought to play a key role in vertebrate social bonds and b) these bonds are developed and maintained via courtship interactions that include low-stakes social dilemmas. Using agent-based simulation, we found that emotional bookkeeping and courtship sustained cooperation in the iterated prisoner's dilemma in noisy environments, especially when combined.
View Article and Find Full Text PDFIn developing artificial intelligence (AI), researchers often benchmark against human performance as a measure of progress. Is this kind of comparison possible for moral cognition? Given that human moral judgment often hinges on intangible properties like "intention" which may have no natural analog in artificial agents, it may prove difficult to design a "like-for-like" comparison between the moral behavior of artificial and human agents. What would a measure of moral behavior for both humans and AI look like? We unravel the complexity of this question by discussing examples within reinforcement learning and generative AI, and we examine how the puzzle of evaluating artificial agents' moral cognition remains open for further investigation within cognitive science.
View Article and Find Full Text PDFWhat inductive biases must be incorporated into multi-agent artificial intelligence models to get them to capture high-fidelity imitation? We think very little is needed. In the right environments, both instrumental- and ritual-stance imitation can emerge from generic learning mechanisms operating on non-deliberative decision architectures. In this view, imitation emerges from trial-and-error learning and does not require explicit deliberation.
View Article and Find Full Text PDFHumans are learning agents that acquire social group representations from experience. Here, we discuss how to construct artificial agents capable of this feat. One approach, based on deep reinforcement learning, allows the necessary representations to self-organize.
View Article and Find Full Text PDFDivision of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior.
View Article and Find Full Text PDFMicrobial populations often contain a fraction of slow-growing persister cells that withstand antibiotics and other stress factors. Current theoretical models predict that persistence levels should reflect a stable state in which the survival advantage of persisters under adverse conditions is balanced with the direct growth cost impaired under favourable growth conditions, caused by the nonreplication of persister cells. Based on this direct growth cost alone, however, it remains challenging to explain the observed low levels of persistence (<<1%) seen in the populations of many species.
View Article and Find Full Text PDFNLRP proteins are important components of inflammasomes with a major role in innate immunity. A subset of NLRP genes, with unknown functions, are expressed in oocytes and early embryos. Mutations of Nlrp5 in mice are associated with maternal-effect embryonic lethality and mutations of NLRP7 in women are associated with conception of biparental complete hydatidiform moles (biCHMs), suggesting perturbed processes of genomic imprinting.
View Article and Find Full Text PDFThe conflicts over sex allocation and male production in insect societies have long served as an important test bed for Hamilton's theory of inclusive fitness, but have for the most part been considered separately. Here, we develop new coevolutionary models to examine the interaction between these two conflicts and demonstrate that sex ratio and colony productivity costs of worker reproduction can lead to vastly different outcomes even in species that show no variation in their relatedness structure. Empirical data on worker-produced males in eight species of Melipona bees support the predictions from a model that takes into account the demographic details of colony growth and reproduction.
View Article and Find Full Text PDFPunishment offers a powerful mechanism for the maintenance of cooperation in human and animal societies, but the maintenance of costly punishment itself remains problematic. Game theory has shown that corruption, where punishers can defect without being punished themselves, may sustain cooperation. However, in many human societies and some insect ones, high levels of cooperation coexist with low levels of corruption, and such societies show greater wellbeing than societies with high corruption.
View Article and Find Full Text PDFCooperation is ubiquitous in the natural world. What seems nonsensical is why natural selection favors a behavior whereby individuals would lose out by benefiting their competitor. This conundrum, for almost half a century, has puzzled scientists and remains a fundamental problem in biology, psychology, and economics.
View Article and Find Full Text PDFWe build a spatial individual-based multilocus model of homoploid hybrid speciation tailored for a tentative case of hybrid origin of Heliconius heurippa from H. melpomene and H. cydno in South America.
View Article and Find Full Text PDF