Publications by authors named "Edgar D Goluch"

Microbial biochemistry contributes to a dynamic environment in the gut. Yet, how bacterial metabolites such as hydrogen sulfide (HS) mechanistically alter the gut chemical landscape is poorly understood. Here we show that microbially generated HS drives the abiotic reduction of azo (R-N = N-R') xenobiotics, which are commonly found in Western food dyes and drugs.

View Article and Find Full Text PDF

We present the design and characterization of a low cost, thread-based electrophoretic device with integrated electrochemical detection. The device has an end-channel pencil graphite electrode placement system for performing electrochemical detection on the thread electrophoresis platform with direct sample pipetting onto the thread. We also established the use of methylene blue and neutral red as a pair of reference migration markers for separation techniques coupled with electrochemical detection, as they have different colors for visual analysis and are both electroactive.

View Article and Find Full Text PDF

One of the hallmark characteristics of chronic diabetic wounds is the presence of biofilm-forming bacteria. Bacteria encapsulated in a biofilm may coexist as a polymicrobial community and communicate with each other through a phenomenon termed quorum sensing (QS). Here, we describe the QS circuits of bacterial species commonly found in chronic diabetic wounds.

View Article and Find Full Text PDF

We report the design and operation of an integrated microfluidics system that uses cellulose ester dialysis membranes coupled with disposable carbon and copper electrodes for monitoring and concentration of microliter scale biofluid samples. Dialysis membranes are typically used for buffer exchange, but in this work, membranes with 100-500 Da MWCO were evaluated for feasibility in concentrating small volume samples. This is an alternative to the use of centrifugation, ultrafiltration, and evaporative methods, where quantitative inline monitoring of sample concentration is challenging.

View Article and Find Full Text PDF

This review provides a comprehensive summary of issues associated with treating polyclonal bacterial biofilms in chronic diabetic wounds. We use this as a foundation and discuss the alternatives to conventional antibiotics and the emerging need for suitable drug delivery systems. In recent years, extraordinary advances have been made in the field of nanoparticle synthesis and packaging.

View Article and Find Full Text PDF

A microfluidic device was designed to investigate filtration of particles in an electrolyte in the presence of liquid flow. Polystyrene spheres in potassium chloride solution at concentrations of 3-100 mM were allowed to settle and adhere to a glass substrate. A particle free solution at the same concentration was then flushed through the microfluidic channel at 0.

View Article and Find Full Text PDF

Advances in next-generation sequencing technology along with decreasing costs now allow the microbial population, or microbiome, of a location to be determined relatively quickly. This research reveals that microbial communities are more diverse and complex than ever imagined. New and specialized instrumentation is required to investigate, with high spatial and temporal resolution, the dynamic biochemical environment that is created by microbes, which allows them to exist in every corner of the Earth.

View Article and Find Full Text PDF

Encrustation on the surface of urological devices such as ureteral stents leads to their blockage. However, limited tools are available for fast and real-time monitoring and modeling of the encrustation process. In this work, we have developed a model for in vitro study of encrustation and coupled it to an online monitoring QCM technique.

View Article and Find Full Text PDF

Curbing antibiotic use requires the development of simple diagnostic tests that provide caregivers with reliable, immediately actionable information to identify whether there is a need to prescribe a specific antibiotic. This Forum article highlights advances in infection screening approaches that use electrochemistry to detect molecular biomarkers for distinct pathogenic infections.

View Article and Find Full Text PDF

In clinical practice, delays in obtaining culture results impact patient care and the ability to tailor antibiotic therapy. Despite the advancement of rapid molecular diagnostics, the use of plate cultures inoculated from swab samples continues to be the standard practice in clinical care. Because the inoculation culture process can take between 24 and 48h before a positive identification test can be run, there is an unmet need to develop rapid throughput methods for bacterial identification.

View Article and Find Full Text PDF

In clinical practice, point-of-care diagnostic testing has progressed rapidly in the last decade. For the field of wound care, there is a compelling need to develop rapid alternatives for bacterial identification in the clinical setting, where it generally takes over 24 hours to receive a positive identification. Even new molecular and biochemical identification methods require an initial incubation period of several hours to obtain a sufficient number of cells prior to performing the analysis.

View Article and Find Full Text PDF

The condition of cells in Pseudomonas aeruginosa biofilms was monitored via the electrochemical detection of the electro-active virulence factor pyocyanin in a fabricated microfluidic growth chamber coupled with a disposable three electrode cell. Cells were exposed to 4, 16, and 100 mg L(-1) colistin sulfate after overnight growth. At the end of testing, the measured maximum peak current (and therefore pyocyanin concentration) was reduced by approximately 68% and 82% in P.

View Article and Find Full Text PDF

Adenovirus infection, which is a waterborne viral disease, is one of the most prevelant causes of human morbidity in the world. Thus, methods for rapid detection of this infectious virus in the environment are urgently needed for public health protection. In this study, we developed a rapid, real-time, sensitive, and label-free SPRi-based biosensor for rapid, sensitive and highly selective detection of adenoviruses.

View Article and Find Full Text PDF

The interest in analytical devices, which typically rely on the reactivity of a biological component for specificity, is growing rapidly. In this Perspective, we highlight current challenges in all-electrical biosensing as these systems shrink toward the nanoscale and enable the detection of analytes at the single-molecule level. We focus on two sensing principles: nanopores and amperometric microelectrode devices.

View Article and Find Full Text PDF

This work focuses on developing a faster method for electrochemically detecting a Pseudomonas aeruginosa infection through the addition of amino acids to cell culture samples. We performed square-wave voltammetry measurements of pyocyanin produced by P. aeruginosa using commercially available carbon-based electrodes connected to a Ag/AgCl reference.

View Article and Find Full Text PDF

We present an automated method for isolating pure bacterial cultures from samples containing multiple species that exploits the cell's own physiology to perform the separation. Cells compete to reach a chamber containing nutrients via a constriction whose cross-sectional area only permits a single cell to enter, thereby blocking the opening and preventing other cells from entering. The winning cell divides across the constriction and its progeny populate the chamber.

View Article and Find Full Text PDF

The ability to quickly detect the presence of pathogenic bacteria in patient samples is of the outmost importance to expedient patient care. Here we report the direct, selective, and sensitive detection of the opportunistic pathogen Pseudomonas aeruginosa, spiked in human whole blood with sodium heparin, urine, sputum, and bronchial lavage samples using unmodified, disposable carbon electrode sensors that detect the presence of pyocyanin, a virulence factor that is unique to this species. Square wave voltammetry scans of biological fluids from healthy individuals spiked with P.

View Article and Find Full Text PDF

This paper describes the use of Surface Plasmon Resonance imaging (SPRi) as an emerging technique to study bacterial physiology in real-time without labels. The overwhelming majority of bacteria on earth exist in large multicellular communities known as biofilms. Biofilms are especially problematic because they facilitate the survival of pathogens, leading to chronic and recurring infections as well as costly industrial complications.

View Article and Find Full Text PDF

This study investigated the ability of lubricin (LUB) to prevent bacterial attachment and proliferation on model tissue culture polystyrene surfaces. The findings from this study indicated that LUB was able to reduce the attachment and growth of Staphylococcus aureus on tissue culture polystyrene over the course of 24 h by approximately 13.9% compared to a phosphate buffered saline (PBS)-soaked control.

View Article and Find Full Text PDF

Miniaturized and integrated components for electrochemical detection in micro- and nano-fluidic devices are of great interest as they directly yield an electrical signal and promise sensitive, label-free, real-time detection. One of the challenges facing electrochemical sensing is the lack of reliable reference electrode options. This paper describes the fabrication and characterization of a microscale palladium hydride reference electrode in a single microfabrication step.

View Article and Find Full Text PDF

Despite the broad use of enzymes in electroanalytical biosensors, the influence of enzyme kinetics on the function of prototype sensors is often overlooked or neglected. In the present study, we employ amperometry as an alternative or complementary method to study the kinetics of tyrosinase, whose catalytic activity results in o-quinone products. We further compare our results for four monophenolic substrates with those obtained from ultraviolet-visible spectrophotometry and show that the results from both assays are in good agreement.

View Article and Find Full Text PDF

We report the electrochemical detection of individual redox-active molecules as they freely diffuse in solution. Our approach is based on microfabricated nanofluidic devices, wherein repeated reduction and oxidation at two closely spaced electrodes yields a giant sensitivity gain. Single molecules entering and leaving the cavity are revealed as anticorrelated steps in the faradaic current measured simultaneously through the two electrodes.

View Article and Find Full Text PDF

We introduce both theoretically and experimentally a new electrochemical technique based on measuring the fluctuations of the faradaic current during redox cycling. By analogy with fluorescence correlation spectroscopy (FCS), we refer to this technique as electrochemical correlation spectroscopy (ECS). We first derive an analytical expression of the power spectral density for the fluctuations in a thin-layer-cell geometry.

View Article and Find Full Text PDF

We demonstrate that a 50 nm high solution-filled cavity bounded by two parallel electrodes in which electrochemically active molecules undergo rapid redox cycling can be used to determine very fast electron-transfer kinetics. We illustrate this capability by showing that the heterogeneous rate constant of Fc(MeOH)(2) sensitively depends on the type and concentration of the supporting electrolyte. These solid-state devices are mechanically robust and stable over time and therefore have the potential to become a widespread and versatile tool for electrochemical measurements.

View Article and Find Full Text PDF