Publications by authors named "Edgar Bolivar-Nieto"

Passive prostheses cannot provide the net positive work required at the knee and ankle for step-over stair ascent. Powered prostheses can provide this net positive work, but user synchronization of joint motion and power input are critical to enabling natural stair ascent gaits. In this work, we build on previous phase variable-based control methods for walking and propose a stair ascent controller driven by the motion of the user's residual thigh.

View Article and Find Full Text PDF

Although emerging powered prostheses can enable people with lower-limb amputation to walk and climb stairs over different task conditions (e.g., speeds and inclines), the control architecture typically uses a finite-state machine to switch between activity-specific controllers.

View Article and Find Full Text PDF

This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model.

View Article and Find Full Text PDF

Human locomotion involves continuously variable activities including walking, running, and stair climbing over a range of speeds and inclinations as well as sit-stand, walk-run, and walk-stairs transitions. Understanding the kinematics and kinetics of the lower limbs during continuously varying locomotion is fundamental to developing robotic prostheses and exoskeletons that assist in community ambulation. However, available datasets on human locomotion neglect transitions between activities and/or continuous variations in speed and inclination during these activities.

View Article and Find Full Text PDF

Current supervised learning or deep learning-based activity recognition classifiers can achieve high accuracy in recognizing locomotion activities. Most available techniques use a high-dimensional space of features, e.g.

View Article and Find Full Text PDF

Compared to rigid actuators, series elastic actuators (SEAs) offer a potential reduction of motor energy consumption and peak power, though these benefits are highly dependent on the design of the torque-elongation profile of the elastic element. In the case of linear springs, natural dynamics is a traditional method for this design, but it has two major limitations-arbitrary load trajectories are difficult or impossible to analyze and it does not consider actuator constraints. Parametric optimization is also a popular design method that addresses these limitations, but solutions are only optimal within the space of the parameters.

View Article and Find Full Text PDF