Int Microbiol
September 2024
The fungus is a quarantine phytopathogen responsible for causing citrus black spot (CBS) disease. To export fruits to CBS-free countries, they must undergo a sanitation process to ensure disease control. In this study, neem essential oil (NEO) was tested against for the first time as an alternative sanitizer.
View Article and Find Full Text PDFUnlabelled: Microorganisms are predominantly responsible for food deterioration, necessitating the sanitization and removal of these entities from food surfaces. The packinghouse employs free chlorine in the sanitization process; however, free chlorine's propensity to react with organic matter, forming potentially toxic compounds, has led to its restriction or outright prohibition in several European countries. Therefore, this study aims to assess various washing methods, emulating packinghouse conditions, utilizing diverse forms of electrolyzed water to impede microbial proliferation and significantly enhance the food's shelf life.
View Article and Find Full Text PDFToxicol Ind Health
October 2023
Textile effluents, although their composition can vary considerably, typically contain high levels of dissolved salts and exhibit wide variations in pH. Ecotoxicological studies regarding the effects of these parameters, however, have been limited owing to the need for sensitive and easy-to-handle bioindicators that require low amounts of sampling, are cost-effective, time-efficient, and ethically endorsed. This kind of study, additionally, demands robust multi-factorial statistical designs that can accurately characterize the individual and combined relationship between variables.
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO NPs) are one of the most widely used nanoparticulate materials due to their antimicrobial properties, but their main mechanism of action (MOA) has not been fully elucidated. This study characterized ZnO NPs by using X-ray diffraction, FT-IR spectroscopy and scanning electron microscopy. Antimicrobial activity of ZnO NPs against the clinically relevant bacteria Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and the Gram-positive model Bacillus subtilis was evaluated by performing resazurin microtiter assay (REMA) after exposure to the ZnO NPs at concentrations ranging from 0.
View Article and Find Full Text PDFSARS-CoV-2 is a new type of coronavirus capable to infect humans and cause the severe acute respiratory syndrome COVID-19, a disease that has been causing huge impacts across the Earth. COVID-19 patients, including mild, pre-symptomatic and asymptomatic cases, were often seen to contain infectious fragments of SARS-CoV-2 in feces and urine samples. Therefore, studies to detect the new coronavirus in wastewater, which collect and concentrate human excreta, have been extremely useful as a viral tracking tool in communities.
View Article and Find Full Text PDFTebuthiuron is often used to control weed growth in sugarcane cultures. This herbicide is highly toxic and can persist in soil for up to 2 years according to its degradation half-life. Hence, its residual effect is highly hazardous for the environment and local habitants via leaching, surface runoff.
View Article and Find Full Text PDFBackground: The largest and most profitable market for citrus is the production of fresh fruit. Xanthomonas citri subsp. citri is a Gram-negative plant pathogen and the etiological agent of citrus canker, one of the major threats to citrus production worldwide.
View Article and Find Full Text PDFThe quaternization of chitosan molecules creates materials with high adsorptive capacity towards textile dyes, which renders them capable of rapidly removing such dyes from a solution. In this study, a novel material was synthesized in bead form to adsorb the Acid Blue 25 textile dye. The adsorption isotherms, kinetics, and thermodynamics of this new material were investigated.
View Article and Find Full Text PDFThe worldwide spillage of fossil fuels causes an ever-increasing environmental concern due to their resistance to biodegradation and toxicity. The diesel fuel is one of the derivative forms of petroleum that is widely used in the world. Its composition has many aromatic compounds and long hydrocarbons chains, both persistent and hazardous, thus requiring complex microbial dynamics to achieve full biodegradation.
View Article and Find Full Text PDFPerfluorinated compounds, including fluorotelomers, are important constituents of firefighting foams to extinguish fuel fires in the petrochemical industry, airports, and at fire-training sites. In this study, we monitored the biodegradation process in a co-contamination scenario with monoaromatic hydrocarbons commonly found in fuels (benzene, toluene) and fluorotelomers. The CO production rates were evaluated by a factorial design taking into account the effect of seasonality at in situ natural attenuation processes.
View Article and Find Full Text PDFJ Environ Manage
December 2017
Electrochemically assisted photocatalysis (by electronic drainage) is a highly promising method for disinfection of water. In this research, the efficiency of photolytic oxidation using UV-A radiation and electrochemically assisted photocatalysis (with electric potential of 1.5 V) was studied by using electrodes prepared by thermal treatment and doped with silver, for inactivation of Escherichia coli and Staphylococcus aureus.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
March 2017
The use of fluoride based foams increases the effectiveness of fire-fighting operations, but they are also accompanied by major drawbacks regarding environmental safety of perfluorinated compounds (PFCs). The main concern with PFCs release is due to their well-known persistence and bioaccumulative potential, as they have been detected in many environmental samples. There is a significant knowledge gap on PFC toxicity to plants, even though such data could be useful towards bioremediation procedures.
View Article and Find Full Text PDFThe type and concentration of perfluorinated compounds (PFCs) can induce different types of enzymes and promote alternate patterns of BTEX transformation. However, it is not known how the presence of active fluorocarbon-degrading microbial populations affects the transformation of BTEX. In addition to chemical analysis at the molecular level, our research approached the aqueous film forming fire-fighting foams (AFFF) and BTEX co-contamination at a large-scale with respirometers to quantify the total microbial metabolism of soil via CO output levels.
View Article and Find Full Text PDFPhotocatalytic water treatment has a currently elevated electricity demand and maintenance costs, but the photocatalytic water treatment may also assist in overcoming the limitations and drawbacks of conventional water treatment processes. Among the Advanced Oxidation Processes, heterogeneous photocatalysis is one of the most widely and efficiently used processes to degrade and/or remove a wide range of polluting compounds. The goal of this work was to find out a highly efficient photocatalytic disinfection process in superficial water with different doped photocatalysts and using three sources of radiation: mercury vapor lamp, solar simulator and UV-A LED.
View Article and Find Full Text PDFArch Environ Contam Toxicol
February 2015
Crude oil and petroleum products have a wide variety of hazardous components with high toxicity and low biodegradability. Certain dyes change their colors by intercepting electron transfer reactions during the transformation processes. This study applied resazurin and 2,6-dichlorophenol-indophenol indicators for a rapid screening biodegradation capability and toxicity response to various petroleum products such as motor oil, diesel, gasoline, and phenol.
View Article and Find Full Text PDFMicrobial pollutant removal capabilities can be determined and exploited to accomplish bioremediation of hydrocarbon-polluted environments. Thus, increasing knowledge on environmental behavior of different petroleum products can lead to better bioremediation strategies. Biodegradation can be enhanced by adding biosurfactants to hydrocarbon-degrading microorganism consortia.
View Article and Find Full Text PDFResponse surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated.
View Article and Find Full Text PDFVegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida) are widespread because they are a practical resource for analyzing terrestrial organisms.
View Article and Find Full Text PDFToxicity tests using Sacharomycces cerevisiae were made with simulated textile effluents containing reactive dye (remazol red brilliant) treated by photoeletrolytic process, varying treatment time and applied current. The treatment incorporated an electrolytic reactor with rectangular titanium anode coated with 70% TiO(2)/30% RuO(2) cathode and a rectangular stainless steel coupled with another photolytic reactor containing a high power UV lamp. The treatment system was used in batch recirculation, in other words, the simulated effluent was driven by the system through a helical pump.
View Article and Find Full Text PDFBull Environ Contam Toxicol
April 2010
The objective of this study was to evaluate the environmental behavior of different types of automotive lubricant oils. Based on respirometry assays the biodegradability was monitored, and toxicological tests were executed to assess the lubricants toxicity before and after microbial activity. Used oil was the most biodegradable, however, it was the most toxic.
View Article and Find Full Text PDFA thin layer electrochemical cell was tested and developed for disinfection treatment of water artificially contaminated with Staphylococcus aureus. Electrolysis was performed with a low-voltage DC power source applying current densities of 75 mA cm(-2) (3 A) or 25 mA cm(-2) (1 A). A dimensionally stable anode (DSA) of titanium coated with an oxide layer of 70%TiO2 plus 30%RuO2 (w/w) and a 3 mm from a stainless-steel 304 cathode was used in the thin layer cell.
View Article and Find Full Text PDF