Publications by authors named "Eder Muller Risso"

Notwithstanding the fact that dietary branched-chain amino acids (BCAAs) have been considered to be a cause of insulin resistance (IR), evidence indicates that BCAA-rich whey proteins (WPs) do not lead to IR in animals consuming high-fat (HF) diets and may instead improve glucose homeostasis. To address the role of BCAA-rich WP as dietary protein in IR and inflammatory response, we fed C57BL/6J mice either high-fat (HF) or low-fat (LF) diets formulated with moderate protein levels (13% w/w) of either WP or hydrolyzed WP (WPH) and compared them with casein (CAS) as a reference. The muscle and plasma free amino acid profiles, inflammatory parameters and glycemic homeostasis were examined.

View Article and Find Full Text PDF

Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, and glutamine supplementation is known to increase HSP expression during intense exercise. Since few studies have addressed the possibility that supplementation with other amino acids could have similar effects to that of glutamine, our objective was to evaluate the effects of leucine, valine, isoleucine and arginine as potential stimulators of HSPs 25, 60, 70 and 90 in rats subjected to acute exercise as a stressing factor. The immune markers, antioxidant system, blood parameters, glycogen and amino acid profile responses were also assessed.

View Article and Find Full Text PDF

Several physiologically beneficial effects of consuming a whey protein hydrolysate (WPH) have been attributed to the greater availability of bioactive peptides. The aim was to investigate the effect of four branched-chain amino acid- (BCAA-)containing dipeptides, present in WPH, on immune modulation, stimulation of HSP expression, muscle protein synthesis, glycogen content, satiety signals and the impact of these peptides on the plasma free amino acid profiles. The animals were divided in groups: control (rest, without gavage), vehicle (water), L-isoleucyl-L-leucine (lle-Leu), L-leucyl-L-isoleucine (Leu-lle), L-valyl-Lleucine (Val-Leu), L-leucyl-L-valine (Leu-Val) and WPH.

View Article and Find Full Text PDF