Molecular dynamics simulations were carried out to investigate cylindrical droplets consisting of binary mixtures of Lennard-Jones (LJ) fluids in contact with a solid substrate. The droplets are composed of mixtures of the monomeric LJ fluid plus linear-tangent chains of 2, 10, 20, and 30 segments per chain that interact through a harmonic potential and the spherically truncated and shifted potential Lennard-Jones. The solid surface was modeled as a semi-infinite platinum substrate with an FCC structure that interacts with the fluid by means of a LJ 9-3 potential.
View Article and Find Full Text PDFBinary mixtures of fully flexible linear tangent chains composed of bonded Lennard-Jones interaction sites (monomers) were studied using the molecular dynamics simulation in the NVT ensemble. Their interfacial properties were investigated in planar interfaces by direct simulation of an explicit liquid film in equilibrium with its vapor. A method for the calculation of long-range interactions in inhomogeneous fluids was implemented to take into account the potential truncation effects.
View Article and Find Full Text PDF