Publications by authors named "Eder Guidelli"

Background/objectives: Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties.

View Article and Find Full Text PDF

Successful implementation of X-ray-activated photodynamic therapy (X-PDT) is challenging because most photosensitizers (PSs) absorb light in the blue region, but few nanoscintillators produce efficient blue scintillation. Here, efficient blue-emitting SrF:Eu scintillating nanoparticles (ScNPs) are developed. The optimized synthesis conditions result in cubic nanoparticles with ≈32 nm diameter and blue emission at 416 nm.

View Article and Find Full Text PDF

A radiolytic synthesis of silver nanoparticles was carried out in combination with a microfluidic method to produce liquid radiation detectors. The detector response was analyzed by correlating the absorbed dose with the dispersion's absorbance and with the hydrodynamic radius (HR). Samples were irradiated with x-rays of varying beam energies and dose rates and the data were discussed to elucidate how nucleation and growth processes are affected by the radiation quantities.

View Article and Find Full Text PDF

The development of nanomaterials has drawn considerable attention in nanomedicine to advance cancer diagnosis and treatment over the last decades. Gold nanorods (GNRs) and magnetic nanoparticles (MNPs) have been known as commonly used nanostructures in biomedical applications due to their attractive optical properties and superparamagnetic (SP) behaviors, respectively. In this study, we proposed a simple combination of plasmonic and SP properties into hybrid NPs of citrate-coated manganese ferrite (Ci-MnFeO) and cetyltrimethylammonium bromide-coated GNRs (CTAB-GNRs).

View Article and Find Full Text PDF

Purpose: To study the influence of silver nanoparticles (AgNP) on tissue reaction when incorporated into a polymeric matrix of polyacrylic acid-based (Carbopol®) gel as a proposal for a new low-cost type of biomaterial that is simple to manufacture for use as an antimicrobial and antioxidative dressing.

Methods: In-vivo tests of implantation in the subcutaneous tissue of the back of rats were performed using polyethylene tubes in three situations: empty, only the gel, and gel incorporated with AgNP. Then, the tissue reaction was studied by counting inflammatory cells.

View Article and Find Full Text PDF

We developed a microfluidic synthesis to grow GdF:Eu theranostic scintillating nanoparticles to simultaneously monitor the X-ray dose delivered to tumors during treatments with X-ray activated photodynamic therapy (X-PDT). The flow reaction was optimized to enhance scintillation emission from the Eu ions. The as-prepared ∼15 nm rhombohedral-shaped nanoparticles self-assembled into ∼100 nm mesoporous flower-like nanostructures, but the rhombohedral units remained intact and the scintillation spectra unaltered.

View Article and Find Full Text PDF

Gold nanoparticles have been extensively used to increase the sensitivity of radiation dosimeters. In this work, nanocomposites of alanine (Ala), 2-methylalanine (2MA), asparagine (Asn) and monosodium glutamate (MSG) containing gold nanoparticles were prepared. The influence of the mass percentage of gold (0.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) applications are limited by the low penetration of UV-visible light into biological tissues. Considering X-rays as an alternative to excite photosensitizers (PS) in a deeper tumor, an intermediate particle able to convert the X-ray energy into visible light (scintillating nanoparticle, ScNP) is necessary. Moreover, accumulation of PS in the target cells is also required.

View Article and Find Full Text PDF

In this work, the natural latex extracted from Harconia speciosa was incorporated with silver nanoparticles (AgNP) to compose a functional biomaterial associating the intrinsic angiogenic activity of the latex and the antimicrobial activity of AgNP. Tissue reaction after subcutaneous implantation in dorsum of rats of membranes without AgNP and with 0.05%, 0.

View Article and Find Full Text PDF

Recent research has shown that latex from different species is able to produce tissue replacement and regeneration. Particularly, biomembranes obtained from Hancornia speciosa latex (HSB) have shown high angiogenic and osteogenic activity. Considering new materials for wound healing, it would be interesting to develop a product combining antibacterial and antifungal activities.

View Article and Find Full Text PDF

The risk of a radiation episode has increased in the last years due to several reasons. In case of a nuclear incident, as with the use of an improvised nuclear device, determination of the radiation doses received by the victims is of utmost importance to define the appropriate medical treatment or to monitor the late effects of radiation. Dose assessment in case of accidents can be performed using commonplace materials found in the accident area.

View Article and Find Full Text PDF

We used Optically Stimulated Luminescence (OSL) from X-ray-irradiated sodium chloride nanocrystals to investigate how silver nanoparticle (AgNP) films enhanced luminescence. We controlled the emitter-AgNP distance and used the OSL intensity and decay times to explore the plasmonic interactions underlying the enhanced luminescence. Both intensity and decay times depended on the emitter-AgNP distance, which suggested that a mechanism involving energy transfer from the localized surface plasmons (LSPs) to the trapped electrons took place through a distance-dependent coupling.

View Article and Find Full Text PDF

Gold nanoparticle (AuNP) films were sputtered over glass and aluminum substrates to enhance optically stimulated luminescence (OSL), a luminescent technique employed for radiation detection, from x-ray irradiated NaCl nanocrystals. The AuNP films deposited over glass led to enhanced-OSL emission, whereas the AuNP films deposited on aluminum substrates quenched the OSL emission. The enhanced-OSL intensity is proportional to the optical density of the film's plasmon resonance band at the stimulation wavelength.

View Article and Find Full Text PDF

Purpose: Noble metal nanoparticles have found several medical applications in the areas of radiation detection; x-ray contrast agents and cancer radiation therapy. Based on computational methods, many papers have reported the nanoparticle effect on the dose deposition in the surrounding medium. Here the authors report experimental results on how silver and gold nanoparticles affect the dose deposition in alanine dosimeters containing several concentrations of silver and gold nanoparticles, for five different beam energies, using electron spin resonance spectroscopy (ESR).

View Article and Find Full Text PDF

Radiation dose assessment is essential for several medical treatments and diagnostic procedures. In this context, nanotechnology has been used in the development of improved radiation sensors, with higher sensitivity as well as smaller sizes and energy dependence. This paper deals with the synthesis and characterization of gold/alanine nanocomposites with varying mass percentage of gold, for application as radiation sensors.

View Article and Find Full Text PDF

Silver/alanine nanocomposites with varying mass percentage of silver have been produced. The size of the silver nanoparticles seems to drive the formation of the nanocomposite, yielding a homogeneous dispersion of the silver nanoparticles in the alanine matrix or flocs of silver nanoparticles segregated from the alanine crystals. The alanine crystalline orientation is modified according to the particle size of the silver nanoparticles.

View Article and Find Full Text PDF

Colloidal silver nanoparticles were synthesized by an easy green method using thermal treatment of aqueous solutions of silver nitrate and natural rubber latex (NRL) extracted from Hevea brasiliensis. The UV-Vis spectra detected the characteristic surface plasmonic absorption band around 435 nm. Both NRL and AgNO(3) contents in the reaction medium have influence in the Ag nanoparticles formation.

View Article and Find Full Text PDF