Novel research on food perception is required for long-term space exploration. There is limited research on food/beverage sensory analysis in space and space-simulated conditions, with many studies presenting biases in sensory and statistical methods. This study used univariate and multivariate analysis on data from pick-and-eat leafy greens to assess self-reported and biometric consumer sensory analysis in simulated microgravity using reclining chairs and space-immersive environments.
View Article and Find Full Text PDFThe early detection of pathogen infections in plants has become an important aspect of integrated disease management. Although previous research demonstrated the idea of applying digital technologies to monitor and predict plant health status, there is no effective system for detecting pathogen infection before symptomatology appears. This paper presents the use of a low-cost and portable electronic nose coupled with machine learning (ML) models for early disease detection.
View Article and Find Full Text PDFFarm livestock identification and welfare assessment using non-invasive digital technology have gained interest in agriculture in the last decade, especially for accurate traceability. This study aimed to develop a face recognition system for dairy farm cows using advanced deep-learning models and computer vision techniques. This approach is non-invasive and potentially applicable to other farm animals of importance for identification and welfare assessment.
View Article and Find Full Text PDFLivestock welfare assessment helps monitor animal health status to maintain productivity, identify injuries and stress, and avoid deterioration. It has also become an important marketing strategy since it increases consumer pressure for a more humane transformation in animal treatment. Common visual welfare practices by professionals and veterinarians may be subjective and cost-prohibitive, requiring trained personnel.
View Article and Find Full Text PDFBackground: Rapid-cycling Brassica napus (B. napus-RC) has potential as a rapid trait testing system for canola (B. napus) because its life cycle is completed within 2 months while canola usually takes 4 months, and it is susceptible to the same range of diseases and abiotic stress as canola.
View Article and Find Full Text PDFBerry cell death assessment can become one of the most objective parameters to assess important berry quality traits, such as aroma profiles that can be passed to the wine in the winemaking process. At the moment, the only practical tool to assess berry cell death in the field is using portable near-infrared spectroscopy (NIR) and machine learning (ML) models. This research tested the NIR and ML approach and developed supervised regression ML models using Shiraz and Chardonnay berries and wines from a vineyard located in Yarra Valley, Victoria, Australia.
View Article and Find Full Text PDFNew and emerging technologies, especially those based on non-invasive video and thermal infrared cameras, can be readily tested on robotic milking facilities. In this research, implemented non-invasive computer vision methods to estimate cow's heart rate, respiration rate, and abrupt movements captured using RGB cameras and machine learning modelling to predict eye temperature, milk production and quality are presented. RGB and infrared thermal videos (IRTV) were acquired from cows using a robotic milking facility.
View Article and Find Full Text PDFArtificial intelligence (AI), together with robotics, sensors, sensor networks, internet of things (IoT) and machine/deep learning modeling, has reached the forefront towards the goal of increased efficiency in a multitude of application and purpose [...
View Article and Find Full Text PDFAdvances in early insect detection have been reported using digital technologies through camera systems, sensor networks, and remote sensing coupled with machine learning (ML) modeling. However, up to date, there is no cost-effective system to monitor insect presence accurately and insect-plant interactions. This paper presents results on the implementation of near-infrared spectroscopy (NIR) and a low-cost electronic nose (e-nose) coupled with machine learning.
View Article and Find Full Text PDFAroma is one of the main attributes that consumers consider when appreciating and selecting a coffee; hence it is considered an important quality trait. However, the most common methods to assess aroma are based on expensive equipment or human senses through sensory evaluation, which is time-consuming and requires highly trained assessors to avoid subjectivity. Therefore, this study aimed to estimate the coffee intensity and aromas using a low-cost and portable electronic nose (e-nose) and machine learning modeling.
View Article and Find Full Text PDFClimate change forecasts higher temperatures in urban environments worsening the urban heat island effect (UHI). Green infrastructure (GI) in cities could reduce the UHI by regulating and reducing ambient temperatures. Forest cities (i.
View Article and Find Full Text PDFLive sheep export has become a public concern. This study aimed to test a non-contact biometric system based on artificial intelligence to assess heat stress of sheep to be potentially used as automated animal welfare assessment in farms and while in transport. Skin temperature (°C) from head features were extracted from infrared thermal videos (IRTV) using automated tracking algorithms.
View Article and Find Full Text PDFBushfires are increasing in number and intensity due to climate change. A newly developed low-cost electronic nose (e-nose) was tested on wines made from grapevines exposed to smoke in field trials. E-nose readings were obtained from wines from five experimental treatments: (i) low-density smoke exposure (LS), (ii) high-density smoke exposure (HS), (iii) high-density smoke exposure with in-canopy misting (HSM), and two controls: (iv) control (C; no smoke treatment) and (v) control with in-canopy misting (CM; no smoke treatment).
View Article and Find Full Text PDFImportant wine quality traits such as sensory profile and color are the product of complex interactions between the soil, grapevine, the environment, management, and winemaking practices. Artificial intelligence (AI) and specifically machine learning (ML) could offer powerful tools to assess these complex interactions and their patterns through seasons to predict quality traits to winegrowers close to harvest and before winemaking. This study considered nine vintages (2008-2016) using near-infrared spectroscopy (NIR) of wines and corresponding weather and management information as inputs for artificial neural network (ANN) modeling of sensory profiles (Models 1 and 2 respectively).
View Article and Find Full Text PDFIncreased global temperatures and climatic anomalies, such as heatwaves, as a product of climate change, are impacting the heat stress levels of farm animals. These impacts could have detrimental effects on the milk quality and productivity of dairy cows. This research used four years of data from a robotic dairy farm from 36 cows with similar heat tolerance (Model 1), and all 312 cows from the farm (Model 2).
View Article and Find Full Text PDFWine aroma profiles are determinant for the specific style and quality characteristics of final wines. These are dependent on the seasonality, mainly weather conditions, such as solar exposure and temperatures and water management strategies from veraison to harvest. This paper presents machine learning modeling strategies using weather and water management information from a Pinot noir vineyard from 2008 to 2016 vintages as inputs and aroma profiles from wines from the same vintages assessed using gas chromatography and chemometric analyses of wines as targets.
View Article and Find Full Text PDFBushfires are becoming more frequent and intensive due to changing climate. Those that occur close to vineyards can cause smoke contamination of grapevines and grapes, which can affect wines, producing smoke-taint. At present, there are no available practical in-field tools available for detection of smoke contamination or taint in berries.
View Article and Find Full Text PDF