An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells.
View Article and Find Full Text PDFCells chemically isolate molecules in compartments to both facilitate and regulate their interactions. In addition to membrane-encapsulated compartments, cells can form proteinaceous and membraneless organelles, including nucleoli, Cajal and PML bodies, and stress granules. The principles that determine when and why these structures form have remained elusive.
View Article and Find Full Text PDFThe eukaryotic genome is packaged within the nucleus as poly-nucleosome 10 nm chromatin fibres. The nucleosome core particle, the fundamental chromatin subunit, consists of a DNA molecule wrapped around a histone octamer. Biochemical modifications of both the DNA and histone proteins have been characterized that influence chromatin structure and function.
View Article and Find Full Text PDFCentrosomes organize microtubule (MT) arrays and are comprised of centrioles surrounded by ordered pericentriolar proteins. Centrioles are barrel-shaped structures composed of MTs, and as basal bodies they template the formation of cilia/flagella. Defects in centriole assembly can lead to ciliopathies and genome instability.
View Article and Find Full Text PDFThe mammalian genome is compacted to fit within the confines of the cell nucleus. DNA is wrapped around nucleosomes, forming the classic "beads-on-a-string" 10-nm chromatin fibre. Ten-nanometre chromatin fibres are thought to condense into 30-nm fibres.
View Article and Find Full Text PDFInduced pluripotent stem (iPS) cell reprogramming is a gradual epigenetic process that reactivates the pluripotent transcriptional network by erasing and establishing repressive epigenetic marks. In contrast to loci-specific epigenetic changes, heterochromatin domains undergo epigenetic resetting during the reprogramming process, but the effect on the heterochromatin ultrastructure is not known. Here, we characterize the physical structure of heterochromatin domains in full and partial mouse iPS cells by correlative electron spectroscopic imaging.
View Article and Find Full Text PDFEukaryotic genomes must be folded and compacted to fit within the restricted volume of the nucleus. According to the current paradigm, strings of nucleosomes, termed 10nm chromatin fibers, constitute the template of transcriptionally active genomic material. The majority of the genome is maintained in a silenced state through higher-order chromatin assemblies, based on the 30nm chromatin fiber, which excludes activating regulatory factors.
View Article and Find Full Text PDFAn open chromatin architecture devoid of compact chromatin is thought to be associated with pluripotency in embryonic stem cells. Establishing this distinct epigenetic state may also be required for somatic cell reprogramming. However, there has been little direct examination of global structural domains of chromatin during the founding and loss of pluripotency that occurs in preimplantation mouse development.
View Article and Find Full Text PDFDifferentiation of mouse embryonic stem cells (mESCs) is accompanied by changes in replication timing. To explore the relationship between replication timing and cell fate transitions, we constructed genome-wide replication-timing profiles of 22 independent mouse cell lines representing 10 stages of early mouse development, and transcription profiles for seven of these stages. Replication profiles were cell-type specific, with 45% of the genome exhibiting significant changes at some point during development that were generally coordinated with changes in transcription.
View Article and Find Full Text PDFElectron microscopy has been the 'gold standard' of spatial resolution for studying the structure of the cell nucleus. Electron spectroscopic imaging (ESI) offers advantages over conventional transmission electron microscopy by eliminating the need for heavy-atom contrast agents. ESI also provides mass-dependent and element-specific information at high resolution, permitting the distinguishing of structures that are primarily composed of protein, DNA, or RNA.
View Article and Find Full Text PDFThe Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3.
View Article and Find Full Text PDF