Atomically thin metal-semiconductor heterojunctions are highly desirable for nanoelectronic applications. However, coherent lateral stitching of distinct two-dimensional (2D) materials has traditionally required interfacial lattice matching and compatible growth conditions, which remains challenging for most systems. On the other hand, these constraints are relaxed in 2D/1D mixed-dimensional lateral heterostructures due to the increased structural degree of freedom.
View Article and Find Full Text PDFThere is a need to monitor patients with cancer of the head and neck postradiation therapy, as diminished swallowing activity can result in disuse atrophy and fibrosis of the swallowing muscles. This paper describes a flexible strain sensor comprising palladium nanoislands on single-layer graphene. These piezoresistive sensors were tested on 14 disease-free head and neck cancer patients with various levels of swallowing function: from nondysphagic to severely dysphagic.
View Article and Find Full Text PDFGraphene decorated with metallic nanoparticles exhibits electronic, optical, and mechanical properties that neither the graphene nor the metal possess alone. These composite films have electrical conductivity and optical properties that can be modulated by a range of physical, chemical, and biological signals. Such properties are controlled by the morphology of the nanoisland films, which can be deposited on graphene using a variety of techniques, including in situ chemical synthesis and physical vapor deposition.
View Article and Find Full Text PDFThis article describes the design of piezoresistive thin-film sensors based on single-layer graphene decorated with metallic nanoislands. The defining characteristic of these composite thin films is that they can be engineered to exhibit a temperature coefficient of resistance (TCR) that is close to zero. A mechanical sensor with this property is stable against temperature fluctuations of the type encountered during operations in the real world, for example, in a wearable sensor.
View Article and Find Full Text PDFThin-film optical strain sensors have the ability to map small deformations with spatial and temporal resolution and do not require electrical interrogation. This paper describes the use of graphene decorated with metallic nanoislands for sensing of tensile deformations of less than 0.04% with a resolution of less than 0.
View Article and Find Full Text PDF