Publications by authors named "Edelmann R"

Purpose: Angiogenesis is crucial for tumor growth and is one of the hallmarks of cancer. In this study, we analyzed microvessel density, vessel median size, and perivascular a-SMA expression as prognostic biomarkers in breast cancer.

Methods: Dual IHC staining was performed where alpha-SMA antibodies were used together with antibodies against the endothelial cell marker CD34.

View Article and Find Full Text PDF

KCNQ1 (Kv7.1 or KvLQT1) is a voltage-gated potassium ion channel that is involved in the ventricular repolarization following an action potential in the heart. It forms a complex with KCNE1 in the heart and is the pore forming subunit of slow delayed rectifier potassium current (I).

View Article and Find Full Text PDF

There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells.

View Article and Find Full Text PDF

Understanding plant adaptation mechanisms to prolonged water immersion provides options for genetic modification of existing crops to create cultivars more tolerant of periodic flooding. An important advancement in understanding flooding adaptation would be to elucidate mechanisms, such as aerenchyma air-space formation induced by hypoxic conditions, consistent with prolonged immersion. Lysigenous aerenchyma formation occurs through programmed cell death (PCD), which may entail the chemical modification of polysaccharides in root tissue cell walls.

View Article and Find Full Text PDF

Styrene-maleic acid copolymers have received significant attention because of their ability to interact with lipid bilayers and form styrene-maleic acid copolymer lipid nanoparticles (SMALPs). However, these SMALPs are limited in their chemical diversity, with only phenyl and carboxylic acid functional groups, resulting in limitations because of sensitivity to low pH and high concentrations of divalent metals. To address this limitation, various nucleophiles were reacted with the anhydride unit of well-defined styrene-maleic anhydride copolymers in order to assess the potential for a new lipid disk nanoparticle-forming species.

View Article and Find Full Text PDF

Cancer-associated fibroblasts are essential modifiers of the tumor microenvironment. The collagen-binding integrin α11β1 has been proposed to be upregulated in a pro-tumorigenic subtype of cancer-associated fibroblasts. Here, we analyzed the expression and clinical relevance of integrin α11β1 in a large breast cancer series using a novel antibody against the human integrin α11 chain.

View Article and Find Full Text PDF

Membrane proteins play an important role in maintaining the structure and physiology of an organism. Despite their significance, spectroscopic studies involving membrane proteins remain challenging due to the difficulties in mimicking their native lipid bilayer environment. Membrane mimetic systems such as detergent micelles, liposomes, bicelles, nanodiscs, lipodisqs have improved the solubility and folding properties of the membrane proteins for structural studies, however, each mimetic system suffers from its own limitations.

View Article and Find Full Text PDF

Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development.

View Article and Find Full Text PDF

Transcriptional analyses of ATCC 17978 showed that the expression of A1S_2091 was enhanced in cells cultured in darkness at 24°C through a process that depended on the BlsA photoreceptor. Disruption of A1S_2091, a component of the A1S_2088-A1S_2091 polycistronic operon predicted to code for a type I chaperone/usher pilus assembly system, abolished surface motility and pellicle formation but significantly enhanced biofilm formation on plastic by bacteria cultured in darkness. Based on these observations, the A1S_2088-A1S_2091 operon was named the hotoegulated ilus ABCD () operon, with A1S_2091 coding for the PrpA pilin subunit.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma, and anti-angiogenic treatment is currently first line therapy for metastatic ccRCC (mccRCC). Response rates and duration of response show considerable variation, and adverse events have a major influence on patient quality of life. The need for predictive biomarkers to select responders to receptor tyrosine kinase inhibitors upfront is urgent.

View Article and Find Full Text PDF

Objective: Endothelial upregulation of adhesion molecules serves to recruit leukocytes to inflammatory sites and appears to be promoted by NOTCH1; however, current models based on interactions between active NOTCH1 and NF-κB components cannot explain the transcriptional selectivity exerted by NOTCH1 in this context.

Approach And Results: Observing that Cre/Lox-induced conditional mutations of endothelial Notch modulated inflammation in murine contact hypersensitivity, we found that IL (interleukin)-1β stimulation induced rapid recruitment of RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) to genomic sites occupied by NOTCH1-RBPJ (recombination signal-binding protein for immunoglobulin kappa J region) and that NOTCH1 knockdown reduced histone H3K27 acetylation at a subset of NF-κB-directed inflammatory enhancers.

Conclusions: Our findings reveal that NOTCH1 signaling supports the expression of a subset of inflammatory genes at the enhancer level and demonstrate how key signaling pathways converge on chromatin to coordinate the transition to an infla mmatory endothelial phenotype.

View Article and Find Full Text PDF

Cellular, molecular, and ultrastructural nephron changes associated with ischemia-reperfusion injury-induced acute kidney injury (IRI-AKI) are not completely understood. Here, a multidisciplinary study was used to identify nephron changes in a mouse model of IRI-AKI. Histological analyses indicated distended Bowman's glomerular spaces and proximal and distal tubules.

View Article and Find Full Text PDF

IL-33, required for viral clearance by cytotoxic T cells, is generally expressed in vascular endothelial cells in healthy human tissues. We discovered that endothelial IL-33 expression was stimulated as a response to adenoviral transduction. This response was dependent on MRE11, a sensor of DNA damage that can also be activated by adenoviral DNA, and on IRF1, a transcriptional regulator of cellular responses to viral invasion and DNA damage.

View Article and Find Full Text PDF

Blue-light positive phototropism in roots is masked by gravity and revealed in conditions of microgravity. In addition, the magnitude of red-light positive phototropic curvature is correlated to the magnitude of gravity. Due to their sessile nature, plants utilize environmental cues to grow and respond to their surroundings.

View Article and Find Full Text PDF

Acinetobacter baumannii is a nosocomial pathogen that has a considerable ability to survive in the hospital environment partly due to its capacity to form biofilms. The first step in the process of establishing an infection is adherence of the bacteria to target cells. Chaperone-usher pili assembly systems are involved in pilus biogenesis pathways that play an important role in adhesion to host cells and tissues as well as medically relevant surfaces.

View Article and Find Full Text PDF

Gravity is a constant unidirectional stimulus on Earth, and gravitropism in plants involves three phases: perception, transduction, and response. In shoots, perception takes place within the endodermis. To investigate the cellular machinery of perception in microgravity, we conducted a spaceflight study with Arabidopsis thaliana seedlings, which were grown in microgravity in darkness using the Biological Research in Canisters (BRIC) hardware during space shuttle mission STS-131.

View Article and Find Full Text PDF

Biological redox cycling of structural Fe in phyllosilicates is an important but poorly understood process. The objective of this research was to study microbially mediated redox cycles of Fe in nontronite (NAu-2). During the reduction phase, structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens CN32 as mediator in bicarbonate- and PIPES-buffered media.

View Article and Find Full Text PDF

talpid(2) is an avian autosomal recessive mutant with a myriad of congenital malformations, including polydactyly and facial clefting. Although phenotypically similar to talpid(3), talpid(2) has a distinct facial phenotype and an unknown cellular, molecular and genetic basis. We set out to determine the etiology of the craniofacial phenotype of this mutant.

View Article and Find Full Text PDF

Palladium nanorods with controlled lengths from 100 to 500 nm and a fixed width of 20 nm were synthesized for the first time by a seedless approach. These rods show higher peak current densities than Pd cubes for formic acid oxidation and the catalytic activity decreases with increasing rod length.

View Article and Find Full Text PDF

The transcriptome of seedlings was analyzed from experiments performed on the International Space Station to study the interacting effects of light and gravity on plant tropisms (project named TROPI-2; Kiss et al. 2012). Seeds of Arabidopsis were germinated in space, and seedlings were then grown in the European Modular Cultivation System for 4 days at ~1g followed by exposure to a range of gravitational accelerations (from microgravity to 1g) and two light treatments (blue light with or without a 1 h pretreatment with red).

View Article and Find Full Text PDF

Objective: Interleukin (IL)-33 is a nuclear protein that is released from stressed or damaged cells to act as an alarmin. We investigated the effects of IL-33 on endothelial cells, using the prototype IL-1 family member, IL-1β, as a reference.

Methods And Results: Human umbilical vein endothelial cells were stimulated with IL-33 or IL-1β, showing highly similar phosphorylation of signaling molecules, induction of adhesion molecules, and transcription profiles.

View Article and Find Full Text PDF

The molecular mechanisms that drive expression of the alarmin interleukin-33 (IL-33) in endothelial cells are unknown. Because nuclear IL-33 is a marker of endothelial cell quiescence (corroborated in this study by coexpression of cyclin-dependent kinase inhibitor p27(Kip1)), we hypothesized that Notch signaling might be involved in regulating IL-33 expression. Activation of Notch1 by immobilized Notch ligands was sufficient to induce nuclear IL-33 expression in cultured endothelial cells.

View Article and Find Full Text PDF

While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments.

View Article and Find Full Text PDF

In plants, sensitive and selective mechanisms have evolved to perceive and respond to light and gravity. We investigated the effects of microgravity on the growth and development of Arabidopsis thaliana (ecotype Landsberg) in a spaceflight experiment. These studies were performed with the Biological Research in Canisters (BRIC) hardware system in the middeck region of the space shuttle during mission STS-131 in April 2010.

View Article and Find Full Text PDF

The aim of this study was to investigate phototropism in plants grown in microgravity conditions without the complications of a 1-g environment. Experiments performed on the International Space Station (ISS) were used to explore the mechanisms of both blue-light- and red-light-induced phototropism in plants. This project utilized the European Modular Cultivation System (EMCS), which has environmental controls for plant growth as well as centrifuges for gravity treatments used as a 1-g control.

View Article and Find Full Text PDF