This study investigates the thermal stability of omega fatty acid-enriched vegetable oils, focusing on their behavior under high-temperature conditions commonly encountered during frying. This research aims to evaluate changes in fatty acid composition, particularly the degradation of essential omega-3, -6, and -9 fatty acids, and the formation of harmful compounds such as trans fatty acids (TFAs). Various commercially available vegetable oils labeled as containing omega-3, omega-6, and omega-9, including refined sunflower, high-oleic sunflower, rapeseed, and blends, were analyzed under temperatures from 180 °C to 230 °C for varying durations.
View Article and Find Full Text PDFAntioxidant therapies are of interest in the prevention and management of ocular disorders such as cataracts. Although an active area of interest, topical therapy with antioxidants for the treatment of cataracts is complicated by multiple ocular anatomical barriers, product stability, and solubility. Entrapment and delivery of antioxidants with poly(lactic-co-glycolic acid) nanoparticles is a possible solution to these challenges, however, little is known regarding their effects in vitro or in vivo.
View Article and Find Full Text PDFNew cocrystals of praziquantel with suberic, 3-hydroxybenzoic, benzene-1,2,4,5-tetracarboxylic, trimesic, and 5-hydroxyisophthalic acids were obtained through ball milling experiments. The optimal conditions for the milling process were chosen by changing the solvent volume and the mechanical action time. Supramolecular interactions in the new cocrystals are detailed based on single-crystal X-ray diffraction analysis, confirming the expected formation of hydrogen bonds between the praziquantel carbonyl group and the carboxyl (or hydroxyl) moieties of the coformers.
View Article and Find Full Text PDFMolecularly imprinted polymers (MIPs) are established artificial molecular recognition platforms with tailored selectivity towards a target molecule, whose synthesis and functionality are highly influenced by the nature of the solvent employed in their synthesis. Steps towards the "greenification" of molecular imprinting technology (MIT) has already been initiated by the elaboration of green MIT principles; developing MIPs in a solvent-free environment may not only offer an eco-friendly alternative, but could also significantly influence the affinity and expected selectivity of the resulting binding sites. In the current study the first solvent-free mechanochemical synthesis of MIPs via liquid-assisted grinding (LAG) is reported.
View Article and Find Full Text PDFSynthetic cathinones (SCs) are a group of new psychoactive substances often referred to as "legal highs" or "bath salts", being characterized by a dynamic change, new compounds continuously emerging on the market. This creates a lack of fast screening tests, making SCs a constant concern for law enforcement agencies. Herein, we present a fast and simple method for the detection of four SCs (alpha-pyrrolidinovalerophenone, -ethylhexedrone, 4-chloroethcathinone, and 3-chloromethcathinone) based on their electrochemical profiles in a decentralized manner.
View Article and Find Full Text PDFMany promising applications of surface-enhanced Raman scattering (SERS), such as microfluidic SERS and electrochemical (EC)-SERS, require immersion of plasmonic nanostructured films in aqueous media. Correlational investigations of the optical response and SERS efficiency of solid SERS substrates immersed in water are absent in the literature. This work presents an approach for tuning the efficiency of gold films over nanospheres (AuFoN) as SERS substrates for applications in aqueous environment.
View Article and Find Full Text PDFThe increasing pollution of surface and groundwater bodies by pharmaceuticals is a general environmental problem requiring routine monitoring. Conventional analytical techniques used to quantify traces of pharmaceuticals are relatively expensive and generally demand long analysis times, associated with difficulties in performing field analyses. Propranolol, a widely used β-blocker, is representative of an emerging class of pharmaceutical pollutants with a noticeable presence in the aquatic environment.
View Article and Find Full Text PDFThe topical administration of medicines is the preferred route in ocular therapy, at least for the anterior segment of the eye. However, the eye's inherent functional and biological barriers all work against the active pharmaceutical ingredient (API) to efficiently reach the targeted retinal structures. The main objective of this article is to offer a systematic review of the scientific literature in recent years, focusing on the latest developments of topical treatment intended for retinal degenerative diseases.
View Article and Find Full Text PDF(1) Background: The current limitations of glioblastoma (GBM) chemotherapy were addressed by developing a molecularly imprinted polymer (MIP)-based drug reservoir designed for the localized and sustained release of ruxolitinib (RUX) within the tumor post-resection cavity, targeting residual infiltrative cancerous cells, with minimum toxic effects toward normal tissue. (2) Methods: MIP reservoirs were synthesized by precipitation polymerization using acrylamide, trifluoromethacrylic acid, methacrylic acid, and styrene as monomers. Drug release profiles were evaluated by real-time and accelerated release studies in phosphate-buffered solution as a release medium.
View Article and Find Full Text PDFThe high affinity and/or selectivity of oligonucleotide-mediated binding offers a myriad of therapeutical and analytical applications, whose rational design implies an accurate knowledge of the involved molecular mechanisms, concurring equilibrium processes and key affinity parameters. Oligonucleotide-functionalized gold surfaces or nanostructures are regularly employed analytical platforms for the development of label-free optical or electrochemical biosensors, and recently, novel detection platform designs have been increasingly considering the synergistic effect of polyvalent binding, involving the simultaneous interaction of two or several oligonucleotide strands. Considering the general lack of studies involving ternary single-stranded DNA (ssDNA) interactions, a complementary analytical workflow involving capillary gel electrophoretic (CGE) mobility shift assay, microcalorimetry and computational modeling has been deployed for the characterization of a series of free and surface-bound binary and ternary oligonucleotide interactions.
View Article and Find Full Text PDFMolecularly imprinted polymers (MIPs) have been proven to be a promising candidate for drug delivery systems (DDS) due to their ability to provide a sustained and controlled drug release, making them useful for treating a wide range of medical conditions. MIP-based DDS offer many advantages, including the administration of a smaller drug doses, due to the higher drug payload or targeted delivery, resulting in fewer side effects, as well as the possibility of attaining high concentrations of the drug in the targeted tissues. Whether designed as drug reservoirs or targeted DDS, MIPs are of great value to drug delivery as conventional drug formulations can be redesigned as DDS to overcome the active pharmaceutical ingredient's (APIs) poor bioavailability, toxic effects, or other shortcomings that previously made them less efficient or unsuitable for therapy.
View Article and Find Full Text PDFThiabendazole (TBZ), a benzimidazole fungicide used for post-harvest treatment, may be a trace contaminant of food matrices. In this work, we report the first EC-SERS (electrochemical-surface enhanced Raman spectroscopy) detection of TBZ in spiked apple juice using electrochemically (EC) roughened, gold-based screen-printed electrodes (AuSPEs) and portable instrumentation. Polarizing the substrate (-0.
View Article and Find Full Text PDFThe discovery of surface enhanced Raman scattering (SERS) from an electrochemical (EC)-SERS experiment is known as a historic breakthrough. Five decades have passed and Raman spectroelectrochemistry (SEC) has developed into a common characterization tool that provides information about the electrode-electrolyte interface. Recently, this technique has been successfully explored for analytical purposes.
View Article and Find Full Text PDFExtensive effort and research are currently channeled towards the implementation of SERS (Surface Enhanced Raman Spectroscopy) as a standard analytical tool as it has undisputedly demonstrated a great potential for trace detection of various analytes. Novel and improved substrates are continuously reported in this regard. It is generally believed that plasmonic nanostructures with plasmon resonances close to the excitation wavelength (on-resonance) generate stronger SERS enhancements, but this finding is still under debate.
View Article and Find Full Text PDFAlthough the human eye is an easily accessible sensory organ, it remains a challenge for drug administration due to the presence of several anatomical and physiological barriers which limit the access of drugs to its internal structures. Molecular imprinting technology may be considered the avant-garde approach in advanced drug delivery applications and, in particular, in ocular therapy. In fact, molecularly imprinted polymers hold the promise to compensate for the current shortcomings of the available arsenal of drug delivery systems intended for ocular therapy.
View Article and Find Full Text PDFConsidering the frequent use of netupitant in polytherapy, the elucidation of its oxidative metabolization pattern is of major importance. However, there is a lack of published research on the redox behavior of this novel neurokinin-1 receptor antagonist. Therefore, this study was performed to simulate the intensive hepatic biotransformation of netupitant using an electrochemically driven method.
View Article and Find Full Text PDFOrganochlorine pesticides (OCPs) embody highly lipophilic hazardous chemicals that are being phased out globally. Due to their persistent nature, they are still contaminating the environment, being classified as persistent organic pollutants (POPs). They bioaccumulate through bioconcentration and biomagnification, leading to elevated concentrations at higher trophic levels.
View Article and Find Full Text PDFIntroduction: The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways.
View Article and Find Full Text PDFA highly selective and sensitive molecularly imprinted polymer (MIP)-based electrochemical sensor was fabricated for the determination of azithromycin, a broad-spectrum macrolide antibiotic, from various biological samples (urine, tears, plasma). The reversible boronate ester bond-mediated, thin (~75 nm) MIP-based biomimetic recognition layer was electrodeposited in non-aqueous media onto the surface of a glassy carbon electrode (GCE). The surface morphology and the analytical performances of the developed sensor were assessed by scanning electron (SEM) and atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).
View Article and Find Full Text PDFDespite the considerable effort made in the past decades, multiple aspects of cancer management remain a challenge for the scientific community. The severe toxicity and poor bioavailability of conventional chemotherapeutics, and the multidrug resistance have turned the attention of researchers towards the quest of drug carriers engineered to offer an efficient, localized, temporized, and doze-controlled delivery of antitumor agents of proven clinical value. Molecular imprinting of chemotherapeutics is very appealing in the design of drug delivery systems since the specific and selective binding sites created within the polymeric matrix turn these complex structures into value-added carriers with tunable features, notably high loading capacity, and a good control of payload release.
View Article and Find Full Text PDFtype 1 (DM1) results from nuclear sequestration of splicing factors by a messenger RNA (mRNA) harboring a large (CUG) repeat array transcribed from the causal (CTG) DNA amplification. Several compounds were previously shown to bind the (CUG) RNA and release the splicing factors. We now investigated for the first time the interaction of an aliphatic polycarbonate carrying guanidinium functions to DM1 DNA/RNA model probes by affinity capillary electrophoresis.
View Article and Find Full Text PDFD-amino acids (AA) analysis is becoming more and more relevant for metabolomics, therefore new analytical tools need to be developed. A common approach to achieve AA enantioseparation is chiral derivatization. Among the chiral derivatization reagents, (+) or (-)-1-(9-fluorenyl) ethyl chloroformate ((+) or (-)-FLEC) has proved to be one of the most versatile.
View Article and Find Full Text PDFIntroduction: Scientific research is beginning to prove the connection between claims by African traditional medicine and the natural chemical specifics contained in medicinal plant . Our previous studies showed that two natural saponin fractions (4A3 and 4A4) identified in the plant as triterpenoid glycosides are capable of activating apoptosis on cervical tumor cell lines. Considering this and some critical roles of human papillomavirus (HPV) E6 oncogene on cervical cells, by promoting carcinogenesis and cell survival, it became necessary to investigate the possible pathways for apoptosis transmission.
View Article and Find Full Text PDFUnfortunately the name of Jean Jacques Vanden Eynde was missing as co-author of this contribution. The correct list of authors is: Ioan O. Neaga, Stephanie Hambye, Ede Bodoki, Claudio Palmieri, Jean Jacques Vanden Eynde, Eugénie Ansseau, Alexandra Belayew, Radu Oprean, Bertrand Blankert.
View Article and Find Full Text PDFCataracts are responsible for half of the world blindness, surgery being the only viable treatment. Lutein, a naturally occurring carotenoid in the eye, has the potential to reduce cataract progression by protecting the eye from photo-oxidative stress. To restore the eye's natural line of defense against photo-oxidative stress, a formulation was developed using zein and poly(lactic-co-glycolic acid) nanoparticles (NPs) embedded in an optimized bioadhesive thermosensitive gel for the delivery of lutein via topical application.
View Article and Find Full Text PDF