Background: Skin barrier health is crucial for preventive and corrective skincare across all skin types. Witch hazel (Hamamelis virginiana) extracts show potential in addressing skin issues, but their efficacy in treating chronic inflammation, improving skin barrier function, and combating UV-induced oxidation requires further investigation.
Aims: To evaluate the efficacy of a novel formula containing witch hazel extracts in treating chronic inflammation, improving skin barrier function, and combating UV-induced oxidation.
Alopecia areata is the second most common form of hair loss in humans after androgenetic alopecia. Although a variety of animal models for alopecia areata have been described, currently the C3H/HeJ mouse model is the most commonly used and accepted. Spontaneous hair loss occurs in 15%-25% of older mice in which the lesions wax and wane, similar to the human disease, with alopecia being more common and severe in female mice.
View Article and Find Full Text PDFTraditional research in inflammatory dermatoses has relied on animal models and reconstructed human epidermis to study these conditions. However, these models are limited in replicating the complexity of real human skin and reproducing the intricate pathological changes in skin barrier components and lipid profiles. To address this gap, we developed experimental models that mimic various human inflammatory skin phenotypes.
View Article and Find Full Text PDFAlopecia areata (AA) is an autoimmune disease caused by T cell-mediated destruction of the hair follicle (HF). Therefore, approaches that effectively disrupt pathogenic T cell responses are predicted to have therapeutic benefit for AA treatment. T cells rely on the duality of T cell receptor (TCR) and gamma chain (γc) cytokine signaling for their development, activation, and peripheral homeostasis.
View Article and Find Full Text PDFThe primary forms of cicatricial (scarring) alopecia (PCA) are a group of inflammatory, irreversible hair loss disorders characterized by immune cell infiltrates targeting hair follicles (HFs). Lichen planopilaris (LPP), frontal fibrosing alopecia (FFA), and centrifugal cicatricial alopecia (CCCA) are among the main subtypes of PCAs. The pathogenesis of the different types of PCAs are poorly understood, and current treatment regimens yield inconsistent and unsatisfactory results.
View Article and Find Full Text PDFThe interleukin-7 (IL-7) signaling pathway plays an important role in regulation of T cell function and survival. We detected overexpression of IL-7 in lesional skin from both humans and C3H/HeJ mice with alopecia areata (AA), a T cell-mediated autoimmune disease of the hair follicle. We found that exogenous IL-7 accelerated the onset of AA by augmenting the expansion of alopecic T cells.
View Article and Find Full Text PDFSurgical induction of alopecia areata (AA) via full-thickness grafting of spontaneous AA-affected C3H/HeJ mouse skin to naïve recipients has been a primary method of transferring the AA disease model phenotype. However, this method is associated with the need to perform an invasive procedure that could negatively impact animal wellbeing. Therefore, a rodent model that rapidly develops AA at a predictable rate and without the need to perform invasive surgical procedures on the mice is essential for studying the pathogenesis of AA.
View Article and Find Full Text PDFStem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle stem cells (HFSCs).
View Article and Find Full Text PDFDrug screening studies for inflammatory skin diseases are currently performed using model systems that only partially recapitulate human diseased skin. Here, we developed a new strategy to incorporate T cells into human 3D skin constructs (HSCs), which enabled us to closely monitor and quantitate T cell responses. We found that the epidermis promotes the activation and infiltration of T cells into the skin, and provides a directional cue for their selective migration towards the epidermis.
View Article and Find Full Text PDFThe hair follicle (HF) is a complex mini-organ that constantly undergoes dynamic cycles of growth and regression throughout life. While proper progression of the hair cycle requires homeostatic interplay between the HF and its immune microenvironment, specific parts of the HF, such as the bulge throughout the hair cycle and the bulb in the anagen phase, maintain relative immune privilege (IP). When this IP collapses, inflammatory infiltrates that aggregate around the bulge and bulb launch an immune attack on the HF, resulting in hair loss or alopecia.
View Article and Find Full Text PDFThe advancement of genetic and preclinical studies has uncovered the mechanisms involved in the pathogenesis of alopecia areata (AA). The development of targeted therapies using small molecules blocking specific pathways for the treatment of AA is underway. By repurposing Food and Drug Administration-approved small molecule JAK inhibitors as treatments for AA, it has been demonstrated that JAK inhibitors can effectively reverse hair loss in patients with moderate to severe AA.
View Article and Find Full Text PDFAlopecia areata (AA) is an autoimmune hair loss disease with infiltration of proinflammatory cells into hair follicles. Current therapeutic regimens are unsatisfactory mainly because of the potential for side effects and/or limited efficacy. Here we report that cultured, transduced fibroblasts, which express the immunomodulatory molecule indoleamine 2,3-dioxygenase (IDO), can be applied to prevent hair loss in an experimental AA model.
View Article and Find Full Text PDFThe development of androgenetic alopecia is associated with a risk of developing cardiovascular diseases, but the association of alopecia areata with cardiovascular diseases in humans is largely unexplored. We measured the plasma level of two common cardiovascular disease markers, cardiac troponin I and C-reactive protein, in alopecia areata and androgenetic alopecia affected subjects. Also, we investigated the possible presence of pro-apoptotic factors in the plasma of hair loss subjects.
View Article and Find Full Text PDFMany therapies are available for the treatment of alopecia areata, including topical, systemic, and injectable modalities. However, these treatment methods produce variable clinical outcomes and there are no currently available treatments that induce and sustain remission. When making management decisions, clinicians must first stratify patients into pediatric versus adult populations.
View Article and Find Full Text PDFAlopecia areata (AA) is a common, inflammatory, nonscarring type of hair loss. Significant variations in the clinical presentation of AA have been observed, ranging from small, well-circumscribed patches of hair loss to a complete absence of body and scalp hair. Patients affected by AA encompass all age groups, sexes, and ethnicities, and may experience frustration with the unpredictable nature of their disease for which there is currently no definitive treatment.
View Article and Find Full Text PDFA subset of basal cell carcinomas (BCCs) are directly derived from hair follicles (HFs). In some respects, HFs can be defined as 'ordered' skin appendage growths, while BCCs can be regarded as 'disordered' skin appendage growths. The aim of the present study was to examine HFs and BCCs to define the expression of common and unique signaling pathways in each skin appendage.
View Article and Find Full Text PDFAlopecia areata (AA) is an autoimmune disease of the hair follicle that results in hair loss of varying severity. Recently, we showed that IFN-γ-producing NKG2D(+)CD8(+) T cells actively infiltrate the hair follicle and are responsible for its destruction in C3H/HeJ AA mice. Our transcriptional profiling of human and mouse alopecic skin showed that the IFN pathway is the dominant signaling pathway involved in AA.
View Article and Find Full Text PDFTNF-like cytokine 1A (TL1A) is expressed on APCs and provides costimulatory signals to activated lymphocytes that bear its functional receptor, death receptor 3 (DR3). TL1A/DR3 signaling is involved in the pathogenesis of human and experimental inflammatory bowel disease. In the current study, we investigated the role of this cytokine/receptor pair in acute intestinal injury/repair pathways.
View Article and Find Full Text PDFAlopecia areata (AA) is believed to be a cell-mediated autoimmune hair loss disease. Both CD4 and cytotoxic CD8 T cells (CTLs) are important for the onset and progression of AA. Hair follicle (HF) keratinocyte and/or melanocyte antigen epitopes are suspected potential targets of autoreactive CTLs, but the specific epitopes have not yet been identified.
View Article and Find Full Text PDFTraditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.
View Article and Find Full Text PDFImmunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants.
View Article and Find Full Text PDF