Overfeeding of a hypercaloric diet leads to obesity, diabetes, chronic inflammation, and fatty liver disease. Although limiting fat or carbohydrate intake is the cornerstone for obesity management, whether lowering fat or reducing carbohydrate intake is more effective for health management remains controversial. This study used murine models to determine how dietary fat and carbohydrates may influence metabolic disease manifestation.
View Article and Find Full Text PDFObjective: Mice with adipocyte-specific inactivation of low-density lipoprotein receptor-related protein-1 (LRP1) are resistant to diet-induced obesity and hyperglycemia because of compensatory thermogenic response by muscle. However, the physiological function of LRP1 in mature adipocytes and its role in cardiovascular disease modulation are unknown. This study compared perivascular adipose tissues (PVAT) from wild-type () and adipocyte-specific LRP1 knockout () mice in modulation of atherosclerosis progression.
View Article and Find Full Text PDFBackground: Numerous epidemiological studies support an inverse association between serum bilirubin levels and the incidence of cardiovascular disease; however, the mechanism(s) by which bilirubin may protect against atherosclerosis is undefined. The goals of the present investigations were to assess the ability of bilirubin to prevent atherosclerotic plaque formation in low-density lipoprotein receptor-deficient ( ) mice and elucidate the molecular processes underlying this effect.
Methods And Results: Bilirubin, at physiological concentrations (≤20 μmol/L), dose-dependently inhibits THP-1 monocyte migration across tumor necrosis factor α-activated human umbilical vein endothelial cell monolayers without altering leukocyte binding or cytokine production.
Background: Antiphospholipid syndrome patients have antiphospholipid antibodies (aPLs) that promote thrombosis, and they have increased cardiovascular disease risk. Although the basis for the thrombosis has been well delineated, it is not known why antiphospholipid syndrome patients also have an increased prevalence of nonthrombotic vascular occlusion. The aims of this work were to determine if aPLs directly promote medial hypertrophy or neointima formation in mice and to identify the underlying mechanisms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2014
It is poorly understood why there is greater cardiovascular disease risk associated with the apolipoprotein E4 (apoE) allele vs. apoE3, and also greater risk with the LRP8/apolipoprotein E receptor 2 (ApoER2) variant ApoER2-R952Q. Little is known about the function of the apoE-ApoER2 tandem outside of the central nervous system.
View Article and Find Full Text PDFObjective: Perivascular adipose tissue (PVAT) expands during obesity, is highly inflamed, and correlates with coronary plaque burden and increased cardiovascular risk. We tested the hypothesis that PVAT contributes to the vascular response to wire injury and investigated the underlying mechanisms.
Approach And Results: We transplanted thoracic aortic PVAT from donor mice fed a high-fat diet to the carotid arteries of recipient high-fat diet-fed low-density lipoprotein receptor knockout mice.
Genome-wide association studies have linked LRP8 polymorphisms to premature coronary artery disease and myocardial infarction in humans. However, the mechanisms by which dysfunctions of apolipoprotein E receptor-2 (apoER2), the protein encoded by LRP8 gene, influence atherosclerosis have not been elucidated completely. The current study focused on the role of apoER2 in macrophages, a cell type that plays an important role in atherosclerosis.
View Article and Find Full Text PDFObjective: Previous studies have shown that inactivation of the group 1B phospholipase A2 (Pla2g1b) suppresses diet-induced obesity, hyperglycemia, insulin resistance, and hyperlipidemia in C57BL/6 mice. A possible influence of Pla2g1b inactivation on atherosclerosis has not been addressed previously. The current study utilized LDL receptor-deficient (Ldlr(-/-)) mice with plasma lipid levels and distribution similar to hyperlipidemic human subjects as a preclinical animal model to test the effectiveness of Pla2g1b inactivation on atherosclerosis.
View Article and Find Full Text PDFGenetic studies have revealed the association between the ε2 allele of the apolipoprotein E (apoE) gene and greater risk of metabolic diseases. This study compared C57BL/6 mice in which the endogenous mouse gene has been replaced by the human APOE2 or APOE3 gene (APOE2 and APOE3 mice) to identify the mechanism underlying the relationship between ε2 and obesity and diabetes. In comparison with APOE3 mice, the APOE2 mice had elevated fasting plasma lipid and insulin levels and displayed prolonged postprandial hyperlipidemia accompanied by increased granulocyte number and inflammation 2 h after being fed a lipid-rich meal.
View Article and Find Full Text PDFRationale: Hemizygous deficiency of the transcription factor Krüppel-like factor 2 (KLF2) has been shown previously to augment atherosclerosis in hypercholesterolemic mice. However, the cell type responsible for the increased atherosclerosis due to KLF2 deficiency has not been identified. This study examined the consequence of myeloid cell-specific KLF2 inactivation in atherosclerosis.
View Article and Find Full Text PDFSteroid hormone receptors function classically in the nucleus as transcription factors. However, recent data indicate that there are also non-nuclear subpopulations of steroid hormone receptors, including estrogen receptors (ERs), that mediate membrane-initiated signaling of unclear basis and significance. Here we have shown that an estrogen-dendrimer conjugate (EDC) that is excluded from the nucleus stimulates endothelial cell proliferation and migration via ERalpha, direct ERalpha-Galphai interaction, and endothelial NOS (eNOS) activation.
View Article and Find Full Text PDFATP7A primarily functions to egress copper from cells, thereby supplying this cofactor to secreted copper-accepting enzymes. This ATPase has attracted significant attention since the discovery of its mutation leading to human Menkes disease and the demonstration of its distribution in various tissues. Recently, we reported that ATP7A is expressed in the human vasculature.
View Article and Find Full Text PDF